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Preface

This volume groups together the papers accepted for the Seventh International
Workshop on Multi-Agent-Based Simulation (MABS 2006), co-located with the
Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2006), which occurred in Hakodate, Japan on May 8, 2006.

MABS 2006 was the seventh workshop of a series that began at ICMAS 1998
(Paris, France), and continued successively with ICMAS 2000 (Boston, USA),
AAMAS 2002 (Bologna, Italia), AAMAS 2003 (Melbourne, Australia), AAMAS
2004 (New York, USA) and AAMAS 2005 (Utrecht, The Netherlands). The
revised version of the papers of these workshops appeared in Springer’s Lec-
ture Notes in Artificial Intelligence, in volumes 1534, 1979, 2581, 2927, 3415
and 3891. All information on the MABS Workshop Series can be found at
http://www.pcs.usp.br/∼mabs.

Multi-agent-based simulation is an inter-disciplinary area which brings to-
gether researchers active within the agent-based social simulation (ABSS) com-
munity and the multi-agent systems (MAS) community. The scientific focus of
MABS lies in the confluence of the ABSS and MAS communities, with a strong
empirical/applicational vein, and its emphasis is on (a) exploring agent-based
simulation as a principled way of undertaking scientific research in the social
sciences and (b) using social theories as an inspiration to new frameworks and
developments in multi-agent systems.

To promote this cross-influence, MABS provides a forum for social scientists,
agent researchers and developers, and simulation researchers to (a) assess the
current state of the art in the modeling and simulation of ABSS and MAS; (b)
identify where existing approaches can be successfully applied; (c) learn about
new approaches; and (d) explore future research challenges.

MABS 2006 attracted a total of 25 submissions from 11 different countries
(Brazil, France, Italy, Japan, Pakistan, Portugal, South Korea, Spain, Sweden,
UK, USA). Every paper was reviewed by three anonymous referees, and in the
end 12 papers were accepted for long presentation and 3 papers were accepted
for short presentation. Every paper was later reviewed again by a Program Com-
mittee member for this volume.

We are very grateful to every author who submitted a paper, as well as to all
the members of the Program Committee and the additional reviewers for their
hard work. The high quality of the papers included in this volume would not be
possible without their participation and diligence. We would also like to thank
Takao Terano, who gave a very interesting invited talk.

Thanks are also due to Jiming Liu (AAMAS 2006 Workshop Chair), Hideyuki
Nakashima and Michael Wellman (AAMAS 2006 General Chairs), and Ei-ichi
Osawa (AAMAS 2006 Local Organization Chair). Finally, we would like to thank
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Springer staff, especially Alfred Hofmann and Christine Günther for their sup-
port of MABS, and their help in the making of this book.

As the social simulation community grows and spreads its multi-disciplinary
influence over several scientific areas, the related conferences also get more promi-
nence, autonomy and importance. To illustrate this point, consider the new
WCSS (First World Congress on Social Simulation), the recent ESSA (Euro-
pean Association on Social Simulation) conference series, the already established
NAACSOS (North American Association for Computational Social and Organi-
zation Sciences) conference series, or the PAAA (Pacific Asian Association for
Agent-Based Approach in Social Systems Sciences) workshop series. In this new
context, we still find that MABS has a place and a relevant role to play, serving
as an interface between the community of social simulation and that of computer
science, especially multi-agent systems.

April 2007 Luis Antunes
Keiki Takadama
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Exploring the Vast Parameter Space  
of Multi-Agent Based Simulation 

Takao Terano 

Department of Computational Intelligence and Systems Sciences, 
Tokyo Institute of Technology 

4259 Nagatsuda-Cho, Midori-ku, Yokohama 226-8502, Japan 
terano@dis.titech.ac.jp 

Abstract. This paper addresses the problem regarding the parameter 
exploration of Multi-Agent Based Simulation for social systems.  We focus on 
the principles of Inverse Simulation and Genetics-Based Validation.  In 
conventional artificial society models, the simulation is executed 
straightforwardly: Initially, many micro-level parameters and initial conditions 
are set, then, the simulation steps are executed, and finally the macro-level 
results are observed. Unlike this, Inverse Simulation executes these steps in the 
reverse order: set a macro-level objective function, evolve the worlds to fit to 
the objectives, then observe the micro-level agent characteristics.  Another 
unique point of our approach is that, using Genetic Algorithms with the 
functionalities of  multi-modal and multi-objective function optimization, we 
are able to validate the sensitivity of the solutions.  This means that, from the 
same initial conditions and the same objective function, we can evolve different 
results, which we often observe in real world phenomena. This is the principle 
of Genetics-Based Validation.  

Keywords: Multi-Agent Based Modeling, Social Systems, Verification and 
Validation, Parameter Exploration, Genetic Algorithms. 

1   Introduction 

As Alan Kay stated, the best way to predict the future is to invent it. When we use 
Multi-agent based simulation (MABS) for social systems, we always invent a new 
world, or a new bird-view-like point, because we are able to design the simulation 
world as we would like to.  Therefore, when we use MABS, we are predicting some 
future. After several decades of the Allan Kay’s statements, we have a new gear for 
predicting the future:  MABS is a new modeling paradigm [1],[2].  

MABS focuses from global phenomena to individuals in the model and tries to 
observe how individuals with individual characteristics or “agents” will behave as a 
group. The strength of MABS is that it stands between the case studies and 
mathematical models. It enables us to validate social theories by executing programs, 
along with description of the subject and strict theoretical development.  

In MABS, behaviors and statuses of individual agents are coded into prog- 
rams by researchers. They also implement information and analytical systems in the 
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environment, so the model itself may be very simple. Even when the number or 
variety of agents increases, the complexity of simulation descriptions itself will not 
increase very much [13], [14]. Axelrod [1] has emphasizes that the goal of agent-
based modeling is to enrich our understanding of fundamental processes that may 
appear in a variety of applications. This requires adhering to the KISS principle, 
which stands for the army slogan “keep it simple, stupid.” 

Running an agent-based model is an easy task, however, the analysis is not [7]. 
Even for a simple simulator with the KISS principle, we must cope with vast 
parameter space of the model. This paper discusses the problem regarding the 
parameter exploration of Agent-Based Simulation for social systems. 

2   Coping with the Huge Parameter Spaces 

There are no Newton’s Laws, or the first principles in social systems. This makes 
MABS approaches both easy and difficult.  The easy face is that we are able to build 
models as we like, on the other hand, the difficult face is that the models are hardly 
grounded in any rigorous grounding theories. For example, the application of finance 
engineering is one of good candidates of MABS approaches. They seem to follow the 
first principles, however, it is not true. The assumptions of finance engineering often 
come from the principles of statistical physics, one of the first principles of physics. 
However, the real data and real phenomena sometimes break the assumptions.  This 
means that the assumptions about social phenomena are not based on the first 
principles.  

The real phenomena in our society and social systems are only  collections of 
instances.  Therefore, using social simulation techniques, we are able to generate so 
many instances of simulation results through MABS.  This is the very merit of our 
MABS approach.  

However, even simple models with ten step decisions with ten alternatives in every 
step have 10**10 parameter spaces. This means that it would take over 10,000 days to 
complete them, if we could search 10 spaces per second.  We must compute so many 
cases. To overcome the problem, one solution of the issue is to follow the KISS 
principle. Simple convincing models are welcome. However, the simpler the model, 
more explanatory interpretation of the result has to be, in order to avoid easy 
explanation such as “We did it and we got it.” Actually, several extreme explanations 
were given to the models discussed in Axelrod or Epstein. When the model is simple, 
the result seems to be obvious, and the harder we try to understand phenomena, the 
more complex the model becomes against the KISS principle. 

To convince the results of MABS, we are required (i) to rigorously validate the 
models and simulators, (ii) to examine background social and organizational system 
theories, and (iii) to overcome the vast of parameters of both agent behaviors and 
models. Also, (iv) we need multiple good results to design and analyze social 
complex task domains. Therefore, as another solution, we propose a new method, 
which employs Generate and Test techniques in the simulation process.  This follows 
the principles of Inverse Simulation and Genetics-Based Validation. 
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3   Principles of Inverse Simulation 

In conventional MABS models, the simulation processes are executed 
straightforwardly: Initially, many micro-level parameters and initial conditions are 
set, then, the simulation steps are executed, and finally the macro-level results are 
observed. Unlike in conventional simulation models, in the Inverse simulation, we 
execute these steps in the reverse order: set a macro-level objective function, evolve 
the worlds to fit to the objectives, then observe the micro-level agent characteristics. 
Thus, we solve very large inverse problems. The basic principles are shown in  
Figure 1. The essential point is that we force to get desired results specified by the 
macro-level objective functions, then analyze the micro-level structures of the results. 

They have thought such brute force approach is infeasible, so far, however, using 
recent competing genetic algorithms (GAs) [4] has made it possible to get multiple 
solutions in reasonable times. In our simulators in the following sections, we have 
employed GAs with tabu-search techniques in Operations Research literatures[5],[6]. 
The method is able to optimize multi-modal functions [3]. This means that, from the 
same initial conditions and the same objective function, we can evolve different 
results, which we often observe in real world phenomena. 
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Design a Model with Many Params.
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Execute Simulation to Optimize it

Evaluate Initial Parameters
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Fig. 1. Basic Cycles of Agent-Based Simulation 

The agents, their behaviors, and the world are controlled by many parameters.  In 
our settings, genotypes of GAs are corresponding to initial parameters of agents and 
the initial world we are considering. Phenotypes of GAs to be evaluated are 
simulation results, which can be measured macro-level evaluation functions. We will 
carry out so many simulation cycles to get the results.  For example. To get one result, 
we might need several hundred simulation steps per simulation.  To evaluate one 
generation,  we might need several hundred populations in parallel, and to converge 
the macro-level objective functions, also we need several hundred GA generations.  
The outline is shown in Figure 2. 
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Fig. 2. Inverse Simulation 

To apply Inverse Simulation, we assume that the MABS models have the following 
properties: 

(i) micro-level rich functionalities of agent behaviors, interactions, and the world; 
     The requirement is important to leap simple models to be analyzed.  If the model 

would be simple, the KISS principle would work better to convince the results. 
(ii) macro-level clear evaluation measures to be optimized through the simulation 

processes; 
      The requirement is critical to quantitatively evaluate the simulation results.  We 

usually use macro level measures of a social network, e.g., the centrality, agents’ 
population distributions, or GINI index of some welfare of the worlds. The 
landscape of the objective functions might be very complex in the social 
phenomena, e.g., multiple peaks and multiple objectives.  So, simple GAs are not 
adequate to get the results.  

(iii) Fast execution of single simulation run. 
      The requirement is necessary to compute the simulation efficiently.  Inverse 

Simulation is computationally high cost.  Therefore, the faster the run, the better 
the results.  We are planning to utilize Grid-based computer systems to apply the 
technique. 

4   Principles of Genetics-Based Validation 

Validation is one of the most critical tasks in MABS approach to convince the results. 
In this section, we address a new statistical validation method: Genetics-Based 
Validation for the solutions of simulation results. This is a kind of sensitivity analyses 
of parameters in the experimental system we target.  The principle is summarized as 
follows.  When Inverse Simulation terminates, using GAs for multiple solutions, if 
there were multiple solutions in the targeted MABS model, then every important  
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parameter of the model would converge.  This means that the objective functions have 
their peaks. However, non-essential parameters would have various distributed 
values. It is because the variations of non-essential parameters would not contribute to 
the values of objective functions. If we would have used conventional GAs, because 
of the effects of genetic drifts, the non-essential parameters would converge. This is a 
bad situation for our analysis.  Competing GAs with the functionalities to cope with 
the multiple solutions, they keep diversity of the solutions. We are able to utilize the 
variance of the parameters to determine whether specified parameters are essential for 
the results of simulations or not.  

In Figure 3, we illustrate the situations.  we observe some distribution of 
simulation results. Initially, simulation results are several values in the sense of the 
objective functions values.  In the final steps, the objective function values converge 
to the same level, however, the distributions of solutions are different according to the 
essential and/or non-essential dimensions of parameters. Therefore, applying 
statistical techniques, we are able to uncover the shape of the landscapes of the results 
measured by the specified objective functions. For example, to apply the principal 
component analysis technique, we are able to obtain the distributions of solution 
values, or simulation results, which will reveal both essential and non-essential 
dimensions of parameters.. We call the method Genetics-Based Validation.  

 

Objective Func. 
Value

Non-Essential
Dimension

Essential
Dimension

Initial Simulation

Final Simulation

Objective Func. 
Value

Non-Essential
Dimension

Essential
Dimension

Initial Simulation

Final Simulation

 

Fig. 3. Principles of Genetics-Based Validation 

5   How Inverse Simulation and Genetics-Based Validation Work  

We have applied the proposed techniques: Inverse Simulation and Genetics-Based 
Validation to various kinds of agent-based simulation models.  In this section, we will 
briefly describe three of them. The first example is a MABS model for social 
interaction analysis. The second one is a marketing model of competing firms. The 
last one is concerned with a MABS model for financial decision making.  The three 
models are too complex to understand from the KISS principle, however, we are able 
to uncover what have happened in the sense of parameter sensitivity analysis. 
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5.1   Example 1: Social Interaction Analysis [8], [9]  

Recently there are so many MABS models from the state-of-the-art literature, they 
frequently report that simple autonomous agents and artificial worlds are able to 
evolve global interesting social structures and behaviors.   

However, many of the researches seem to report too artificial results, because of 
the following three reasons:  

(I) Although many agent models are developed from the bottom-up, the functions 
the agents have are so simple that the models can only handle with difficulty to 
practical social interaction problems. 

(II) Although the functions are simple from the viewpoint of simulation experiments, 
the models have too many parameters that can be tuned and, therefore, it seems 
as if any good result a model builder desires is already built in.  

(III) The results seem to have a weak relationship with emerging phenomena in real-
world activities. 

Thus, these studies have not yet attained a level necessary to describe the flexibility 
and practicability of social interactions in real organizations.  

To overcome such problems, we have developed a novel multi-agent-based 
simulation environment TRURL for social interaction analysis.  

The basic principles of TRURL can be summarized as follows: To address point (I) 
above, the agents in the model have detailed characteristics with enough parameters to 
simulate real world decision making problems; with respect to (II), instead of 
manually changing the parameters of the agents, we evolve the multi-agent worlds 
using GA-based techniques; as for (III), we set some socio-metric measures which 
can be observed in real world phenomena as the objective functions to be optimized 
during evolution. 
 

Fitness trend

World Net Forum Fitness Messages

Communication
Network

Fitness trend

World Net Forum Fitness Messages

Communication
Network  

Fig. 4. Execution of TRURL 
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Using TRURL, therefore, we are able to analyze the nature of social interactions, 
which are based on such real-world activities as e-mail-oriented organizations and 
electronic commerce markets. We illustrate the snapshot of TRURL execution in 
Figure 4.  
    In TRURL, each agent sends and receives messages according to the received 
knowledge attribute. The a priori attribute of the agent is described as a gene sequence 
on the chromosome which represents the society. The characteristics of the agent 
participating in the TRURL artificial society are represented by the speaking 
probability, the knowledge transfer rate, the comment attitude, and the like: 

),,,,,,,,,,( μδγβαnppppcP carspp = , 

where cp denotes the physical coordinates of the agent, ps is the speaking probability, 
pr is the receiving reliability, pa is the comment attitude, pc is the additional remark 
probability, n is the knowledge width, α  is the weight transfer rate, β  is the 

evaluation value transfer rate, γ  is the certainty transfer rate, δ is the metabolism, 

and μ  is the mutation rate.  

The characteristics of the agent participating in the artificial society TRURL are 
represented by these parameters. What agents are generated in the society depends on 
the character of the society. Figure 1 shows the relation between the gene structure 
and agent generation.  The agent has the following a posteriori attributes:  

),,,,( mccewP csa = . 

Here w is the weight of the knowledge attribute, e is the evaluation value, c is the 
certainty, cc is the reliability coordinate of agent, and m is the behavior energy. When 
an agent is generated, the a posteriori attribute is initialized as a random variable 
following the normal distribution. When a communication between agents is 
performed, the a posteriori attribute is modified. The a posteriori attribute differs from 
the a priori attribute, being a parameter that changes dynamically according to the 
interaction between agents. 

When an agent is generated, the a posteriori attribute is initialized as a random 
variable following the normal distribution. When a communication between agents is 
performed, the a posteriori attribute is modified. The a posteriori attribute differs from 
the a priori attribute, being a parameter that changes dynamically according to the 
interaction between agents. 

The information transmission process can be considered as a decision-making process 
based on alignment behavior. In this model, the change of the knowledge 
attributeparameter when a message is received is defined for each parameter. The 
weight w, the evaluation value e, and the certainty c are defined as follows: 
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where, ,, i
kd

i
kd ew and i

kdc  are the weight of the knowledge attribute kd, the evaluation 

value, and the certainty, respectively. βα ,  and γ   are transfer rates. S represents the 

set of sending agents of the messages received by agenti at period t. 
The behavior energy m changes in proportion to the change of the information 

content. At the initial stage of generation, m is specified at random in accordance with 
the normal distribution. When information is sent, m decreases in accordance with the 
metabolism δ ; when valuable information (with a relatively high certainty) is 
received from another agent, it is increased; and when no communication occurs, m 
decreases regularly according toδ . 

From the viewpoints of Inverse Simulation, In TRURL, the individuals are 
corresponding to the set of initial agent parameters.  The multiple objective functions 
are corresponding to macro-level measures about social interactions, for example, the 
GINI indices of social welfare measured by the amount of information the agents 
have.  Through Genetics-Based Validation, we are able to observe that free-riders in 
the information networked society have positive effects to the total welfare of the 
society.  From the simulation studies, for example, we have found the information 
difference between the information rich and information poor is not increased as 
much as was expected in the net society, and that although free riders are generated, 
they do not induce the collapse of norms. 

5.2   Example 2: Model of Competing Firms in Marketing [12]  

The second example of ABS is to explore 'optimal' marketing strategies on given 
specific markets.  Conventional research in business strategy literature, they state the 
importance of translating the strategy of a company into action to get the profit.  In 
our study, on the contrary, we will observe agents' action or companies' activity in the 
artificial society with given conditions and investigate the agents' or companies' 
strategy.  To model this, we must specify both company and customer models.    

As the basis of companies' strategy, we use the concepts of the Balanced Scorecard 
(BSC) to describe the agent functionality. to describe the agent functionality.  The 
origin of BSC by Kaplan and Norton [15] was a performance measurement system of 
a company. The system was then extended to the one, which organized around four 
distinct perspectives – financial, customer, internal, and innovation and learning.  
Innovative companies used BSC not only to clarify and communicate strategy, but 
also to manage strategy.  This means that BSC evolved from an improved 
measurement system to a core management system [16]. 

Based on the background, we employ the idea of Treacy and Wirsema [17] about 
the strategy of a company on the value proposition of customers: (a) operational 
excellence, (b) customer intimacy, and (c) product leadership.  These three criteria 
determine the company type. However, the criteria are only descriptive ones.  They 
do not explain which types of companies are how characterized in real market places.  

We have determined the seven attributes to the value proposition of a company:  
(1) price, (2) quality, (3) time, and (4) function; (5) services and (6) relationship 
among customers; and (7) brand image. The company's decision depends on how to 
distribute these values among the seven attributes. 
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In order to model customers, they are divided by the two attributes: price and 
quality of  the goods or services.  The four clusters are (A) price sensitive and quality 
sensitive (the lower price and the higher quality the better); (B) price sensitive and 
quality insensitive; (C) price insensitive and quality sensitive; and (D) prince 
insensitive and quality insensitive.  From survey studies, the attitudes of customers in 
each category or customers' parameters are determined.  

In the simulator, the society contains 40 competing companies.  We have tuned up 
the attributes of a company  (1) to (7) as genes of GAs and the attributes of the 
remaining 39 companies are set to random values and do not change during the 
simulation. Customers’ clusters are determined against the market conditions and 
remain constant during the simulation. 
 

The simulation is carried out via the following steps: 

Step 1: Based on the attribute values, determine the amount of investment to each 
division 

Step 2: Determine the sales goal based on the previous market demand and sales 
Step 3: Calculate the logistic and material cost per good based on the amount of the 

products. 
Step 4: Calculate the cash expenditure and determine the excess to borrow. 
Step 5: Calculate the market demand in each cluster of customers. 
Step 6: Calculate sales amount as the minimum values of sales stocks and market 

demands. 
Step 7: Generate the corresponding balance sheet to be evaluated. 
Step 8: If  the current term is 10 then stop, else increase the step. 

Figure 5 shows the architecture. 
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Fig. 5. Architecture of the Market Simulator 
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When the simulation reaches term 10, the four objective values are evaluated by 
the BSC information:  Benefit, Market Share, Cash flow, and Borrowing.  This means 
that the target society is evaluated by independent  four objective functions:  
Max_benefit, Max_market-share, Max_cash-flow, and Min_borrowing. 

From the viewpoints of Inverse Simulation, In the marketing simulator, the 
individuals are corresponding to the set of initial parameters of value propositions of a 
company. The multiple objective functions are corresponding to measures of a 
company about financial benefits, market share, cash flows, and borrowings.  From 
Genetics-Based Validation, we are able to observe that the changes of markets, e.g., 
the ratio of kinds of customers will cause the changes of the strategies.  

From the simulation studies, we have observed that 1) the price and service are 
important for benefit and cash flow maximize and strategies; 2) about the share 
maximization, there are few dominate strategies; and 2) on the other hand, price and 
time will affect for borrowing strategy.   

About the other two markets, the variances of genes show the similar tendency.  
About the share of the market, the TV set market has the smallest effect about the 
cost. About the radio cassettes market, time is important factor.  About the electric 
shaver market, function is critical.  The results partly coincide with the discussion of 
some of marketing research results:  the operational excellence strategy is the 
dominated one in the simulation. 

5.3   Example 3: Investors in Behavioral Finance [10], [11]  

The Third example is to investigate the risks of financial markets.  We have 
developed a simulator to clarify microscopic and macroscopic links between investor 
behaviors and price fluctuations in a financial market. The virtual financial market 
with 1000 investor agents has been used as the model for this research. They share 
and risk-free assets with the two possible transaction methods. Several types of 
investors exist in the market, each undertaking transactions based on their own stock 
calculations. The market is composed of three major steps, (1) generation of corporate 
earnings, (2) formation of investor forecasts, (3) setting transaction prices. The market 
advances through repetition of these steps. 

This market consists of both risk-free and risky assets. There is a financial security 
(as risky assets) in which all profits gained during each term are distributed to the 
shareholders. Corporate earnings ( )ty  are expressed as ( )ttt yy ε+= − 11 , however 
they are generated according to the process ( )2,0 yt N σε ～  with share trading being 
undertaken after public announcement of profit for the term. Each investor is given 
common asset holdings at the start of the term with no limit placed on debit and credit 
transactions.   

Investors in the market calculate transaction prices based on their own forecast  
for market tendency, taking into account both risk and return rates when mak- 
ing investment decisions. Each investor decides on the investment ratio ( )i

tw  of  

stock for each term based on the maximum objective function 

of ( ) ( ) ( ) ( )22,
1

int,
1 1 i

t
is

t
i
tf

i
t

i
t

i
t wwrwrwf −+ −−+= σλ . In this case, i

tr
int,

1+
 and is

t
,
1−σ  express the 
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expected rate of return and risk for stock as estimated by each investor i. fr represents 

the risk-free rate. i
tw  is the stock investment ratio of investor i for term t [2][5]. 

Expected rate of return for shares ( )i
tr
int,

1+
 is calculated as 

( )( ) ( ) ( )( ) +⋅+⋅⋅= +
−

−
−

−
−−

−
−

+
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Here,  im
t

if
t rr ,,

1+  express the expected rate of return, calculated respectively from 

short-term expected rate of return, and risk and gross current price ratio of stock 
etc[2][5]. 

Short-term expected rate of return ( )if
tr

,  is obtained by ( )( )( )i
tt

if
t

if
t

if
t PyPr η+−+= +++ 11,

1
,

1
,
1

, 

( )if
t

if
t yP ,

1
,
1 , ++

 being the equity price and profit forecast for term t+1 as estimated by the 
investor. Short-term expected rate of return includes the error term ( )( )2,0 n

i
t N ση ～  

reflecting that even investors of the same forecast model vary slightly in their detailed 
outlook.  

Expected rate of return for stock ( )im
tr  as obtained from stock risk etc. is calculated 

from stock risk ( )is
t

,
1−σ , benchmark equity stake ( )1−tW , investors’ degree of risk 

avoidance ( )λ , and risk-free rate ( )fr in the equation ( ) ft
s
t

im
t rWr += −− 1

2

12 σλ . 
This analysis looks at (1) forecasting based on fundamental values, (2) forecasting 

based on trends (4 terms), and (3) forecasting based on past averages (4 terms). 
The fundamental value of shares is estimated using the dividend discount model. 

Fundamentalists estimate the forecast stock price ( )if
tP ,

1+  and forecast profit ( )if
ty ,

1+  
from profit for the term ( )ty  and discount rate of stock ( )δ  respectively 
as t

if
tt

if
t yyyP == ++

,
1

,
1 ,δ . 

Forecasting based on trends involves forecasting next term equity prices and profit 
through extrapolation of the most recent stock value fluctuation trends. This analysis 
looks at the 4 terms of 1 day, 5 days, 10 days, and 20 days for trend measurements. 
Forecasting based on past averages involves estimating next term equity prices and 
profit based on the most recent average stock value. Average value was measured for 
the 4 terms of 1 day, 5 days, 10 days, and 20 days. 

Stock risk is measured as h
ti

is
t s 1

,
1 −− = σσ . In this case, h

t 1−σ  is an index that represents 
stock volatility calculated from price fluctuation of the most recent 100 steps, and 

is  
the degree of overconfidence. The presence of a strong degree of overconfidence can 
be concluded when the value of 

is  is less than 1, as estimated forecast error is shown 
as lower than its actual value. Transaction prices are set as the price where stock 
supply and demand converge ( )( )∑ =

=M

i t
i
t

i
t NPwF

1
. 

The architecture is illustrated in Figure 6. 
The Inverse Simulation Analysis consists of the following 3 steps. (1) Carry out 

100 times a simulation with an investment period of 100 terms. (2) Calculate the 
index of deviation between transaction prices and the fundamental value for each 
simulation. (3) Set the calculated index as the adaptive value and select 100 
simulation conditions (investors' forecasts, confidence). This analysis is undertaken 
through repetition of these 3 steps. The index ( )q  of deviation between transaction 
prices and the fundamental value expresses the deviation ratio with the fundamental 
value and is specifically calculated as [ ] [ ]xVarxEq += 2 . However,  0

tP  represents 
the fundamental value ( ) 00

tttt PPPx −=  for term t. 
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Fig. 6. Architecture of the Financial Market Simulator 

From the simulation study of the agent-based virtual market,  we have found that 
(1) overconfident investors emerge in a bottom-up fashion in the market, and (2) these 
overconfident investors have the ability to contribute to the market, in which the 
trading prices are coincide with theoretical fundamental values.   

Traditional finance argues that market survival is possible for those investors able 
to swiftly and accurately estimate both the risk and rate of return on stock, achieving 
market efficiency. However, analysis results obtained here regarding the influence 
irrational investors have on prices suggests a different situation, pointing to the 
difficulty of market modeling which takes real conditions into account.  

6   Concluding Remarks 

This paper addresses the problem regarding the parameter exploration of Agent-Based 
Simulation for social systems. In this paper, in order to enhance the power of  MABS 
models, we have discussed the critical issues of validations, background theories, and 
vast parameter spaces. Then we have explained the principles of Inverse Simulation 
and Genetics-Based Validation. After the proposal, to convince the effectiveness of 
the proposed methods, based on our previous and on-going research projects, we have 
demonstrated  the applications of the principles to MABS models: Social Interaction 
analysis, Marketing strategies, and Financial decision making.  

Future work includes the refinement of the principles to apply the ones to much 
more complex task domains: (1) Determination of effective objective functions or 
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macro-level evaluation method of the simulation results; (2) Design of micro level 
agent functionalities including the concepts of distributed artificial intelligence and 
machine learning; (3) New competing genetic algorithms for the purpose, (4) 
Development of very large scale simulation environments including grid computing, 
and (5) Development of validation methods based on the concepts of estimation of 
distribution algorithms in genetic algorithm literatures. 
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Applications of Agent Based Simulation 

Paul Davidsson, Johan Holmgren, Hans Kyhlbäck, Dawit Mengistu,  
and Marie Persson 

School of Engineering, Blekinge Institute of Technology 
Soft Center, 372 25 Ronneby, Sweden 

Abstract. This paper provides a survey and analysis of applications of Agent 
Based Simulation (ABS). A framework for describing and assessing the appli-
cations is presented and systematically applied. A general conclusion from the 
study is that even if ABS seems a promising approach to many problems in-
volving simulation of complex systems of interacting entities, it seems as the 
full potential of the agent concept and previous research and development 
within ABS often is not utilized. We illustrate this by providing some concrete 
examples. Another conclusion is that important information of the applications, 
in particular concerning the implementation of the simulator, was missing in 
many papers. As an attempt to encourage improvements we provide some 
guidelines for writing ABS application papers.  

1   Introduction 

The research area of Agent Based Simulation (ABS) continues to produce techniques, 
tools, and methods. In addition, a large number of applications of ABS have been 
developed. By ABS application we here mean actual computer simulations based on 
agent-based modelling of a real (or imagined) system in order to solve a concrete 
problem. The aim of this paper is to present a consistent view of ABS applications (as 
they are described in the papers) and to identify trends, similarities and differences, as 
well as issues that may need further investigation.  

As several hundreds of ABS applications have been reported in different publica-
tions, we had to make a sample of these. After having performed a preliminary search 
for papers describing ABS applications that resulted in about 50 papers, we identified 
one publication that was dominating. About 30% of the papers were published in the 
post-proceedings of the MABS workshop series [1, 2, 3, 4, 5] whereas the next most 
frequent publications covered only 10%. We then chose to focus on the MABS publi-
cation series and found 28 papers containing ABS applications (out of 73). Even if we 
cannot guarantee that this is an unbiased sample, we think that selecting all the appli-
cations reported in a particular publication series with a general ABS focus (rather 
than specializing in particular domains etc.), is at least an attempt to achieve this. 

In the next section, we present the framework that will be used to classify and as-
sess the applications. This is followed by a systematic survey of the sampled papers. 
Finally, we analyze our findings and present some conclusions. 
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2   Evaluation Framework 

An ABS application models and simulates some real system that consists of a set of 
entities. The ABS itself can be seen as a multi-agent system composed of a set of 
(software) agents. That is, there is a correspondance between the real system and the 
multi-agent system as well as between the (real) entities and the agents. We will use 
the terms “system” and “entity” when referring to reality and “multi-agent system” 
and “agent” when referring to simulation models. For each paper we describe 
different aspects of the problem studied, the modeling approach taken to solve it, the 
implementation of the simulator, and how the results are assessed. 

2.1  Problem Description 

Each problem description includes the domain studied, the intended end-user, and the 
purpose of the ABS application.  

Domain: The domain of an application refers to the type of system being simulated. 
We identified the following domains after analyzing the sampled papers: 

1) An animal society consists of a number of interacting animals, such as an ant 
colony or a colony of birds. The purpose of a simulation could be to better under-
stand the individual behaviors that cause emergent phenomena, e.g., the behavior 
of flocks of birds. 

2) A physiological system consists of functional organs integrated and co-
operatively related in living organisms, e.g., subsystems of the human body . The 
purpose could be to verify theories, e.g., the regulation of the glucose-insulin me-
tabolism inside the human body. 

3) A social system consists of a set of human individuals with individual goals, i.e., 
the goal of different individuals may be conflicting. An example could be to 
study how social structures like segregation evolve. 

4) An organization is here defined as a structure of persons related to each other in 
purposefully accomplishing work or some other kind of activity, i.e., the persons 
of the organization have common goals. The aim of a simulation could be to 
evaluate different approaches to scheduling work tasks with the purpose of speed-
ing up the completion of business processes.  

5) An economic system is an organized structure in which actors (individuals, 
groups, or enterprises) are trading goods or services on a market. The applica-
tions which we consider under this domain may be used to analyze the interac-
tions and activities of entities in the system to help understand how the market or 
economy evolves over time and how the participants of the system react to the 
changing economic policies of the environment where the system is operating.  

6) In an ecological system animals and/or plants are living and developing together 
in a relationship to each other and in dependence of the environment. The pur-
pose could be to estimate the effects of a plant disease incursion in an agricultural 
region. 

7) A physical system is a collection of passive entities following only physical laws. 
For example, a pile of sand and the purpose of the simulation may be to calculate 
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the static equilibrium of a pile considering forces between beads and properties 
within the pile considered as a unit. 

8) A robotic system consists of one or more electro-mechanical entities having sen-
sory, decision, tactile and rotary capabilities.  An example is the use of a set of 
robots in patrolling tasks. The purpose of the simulation could be to study the ef-
fectiveness of a given patrolling strategy. 

9) Transportation & traffic systems concern the movement of people, goods or in-
formation in a transportation infrastructure such as a road network or a telecom-
munication network. A typical example is a set of interacting drivers in a road 
network. The purpose of a simulation could be to create realistic models of hu-
man drivers to be used in a driving simulator. 

End-users: The end-users of an ABS application are the intended users of the simula-
tor. We distinguish here between four types of end-users: scientists, who use the ABS 
in the research process to gain new knowledge, policy makers, who use ABS for mak-
ing strategic decisions, managers (of a systems), who use ABS to make operational 
decisions, and other professionals, such as architects, who use ABS in their daily 
work. 

Purpose: The purpose of the studied ABS applications is classified according to pre-
diction, verification, training and analysis. We refer to prediction as making progno-
ses concerning future states. Verification concerns the purposes of determining 
whether a theory, model, hypothesis, or software is correct. Analysis refers to the pur-
pose of gaining deeper knowledge and understanding of a certain domain, i.e., there is 
no specific theory, model etc to be verified but we want to study different phenomena, 
which may however lead to theory refinement. Finally, training is for the purpose of 
improving a person's skills in a certain domain.  

2.2   Modeling Approach 

The modeling aspects are captured by the eight aspects described below.  

Simulated Entities: They are the entities distinguished as the key constituents of the 
studied systems and modeled as agents. Four different categories of entities are identi-
fied: Living thing - humans or animals, Physical entity - artifacts, like a machine or a 
robot, or natural objects, Software process - executing program code, or Organization - 
an enterprise, a group of persons, and other entities composed by a set of individuals. 

Number of Agent Types: Depending on the nature of the studied application, the 
investigators have used one or more different agent types to model the distinct entities 
of the domain. 

Communication: The entities can have some or no interaction with one another. The 
interactions take place in the form of inter-agent communication, i.e., messaging. 
Here, we defined two values to indicate whether communication between agents ex-
ists or not. 

Spatial Explicitness refers to the assumption of a location in the physical space for 
the simulated entities. This can be expressed either as absolute distance or relative 
positions between entities.  
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Mobility refers to the ability of an entity to change position in the physical space. 
Although the real world entities may be spatially situated or moving from place to 
place, this fact need not be considered in the simulation if its inclusion or omission 
does not affect the outcome of the study. 

Adaptivity is the ability of the entities to learn and improve with experience that they 
may acquire through their lifetime. Two values are defined to indicate whether the 
simulated entities are adaptive or not. 

The structure of MAS refers to the arrangement of agents and their interaction in the 
modeled system to carry out their objectives. This arrangement could be in one of the 
following three forms: peer-to-peer, hierarchical, or recursive. In a peer-to-peer ar-
rangement, individual entities of the modeled system are potentially interacting with 
all other entities. In a hierarchical structure, agents are arranged in a tree-like structure 
where there is a central entity that interacts with a number of other entities which are 
located one level down in the hierarchy. Whereas, in a recursive structure, entities are 
arranged in groups, where the organization of each group could be in either of the 
forms above, and these groups are interacting among each other to accomplish their 
tasks. The three types of MAS structure are illustrated in Fig 1. 

 

 

 

 

 

 

 

Fig. 1. Peer-to-peer, hierarchical, and recursive organization of a MAS 

Dynamic: If the modeled entities are able to come into existence at different instances 
of time during a simulation, we regard them as dynamic. 

2.3   Implementation Approach 

The implementation approach used is described in terms of the following aspects:  

Platform used: The software platform is the development environment, tool or lan-
guage with which the ABS application is developed. The platforms provide support to 
different degrees for the developers so that they need not worry about every imple-
mentation detail. 

Simulation size describes the number of agents participating in the implementation of 
the ABS application. If the number is different between simulations or is changing 
dynamically during a simulation, we will use the largest number. 

Scale: The size of data used in the actual simulations has been divided into lim-
ited/partial or full-scale data. The full-scale data represents data for a whole system, 
while the limited/partial data only covers parts of the system. 
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Input data: The data used in the experiment can either be real data, i.e. taken from 
existing systems in the real world, or data that is not real, i.e. artificial, synthetic or 
generated.  

Distributed: ABS applications, depending on the size and sometimes the nature of 
the application, may require different execution environments: a single computer, if 
the number is small or several computers in a distributed environment, if the number 
of agents is large. 

Mobile agents: Agents executing in a distributed environment can be described by 
their mobility, as static or mobile. Static agents run on a singular computer during 
their lifetime. Mobile agents, on the other hand, are able to migrate between com-
puters in a network environment.  

2.4   Results 

The classification of the result of the approaches will be in terms of maturity of the 
research, comparison to other approaches and the validation performed. 

Maturity: ABS applications can have varying degree of maturity. In our framework 
the lowest degree of maturity is conceptual proposal. Here the idea or the principles 
of a proposed application is described, but there is no implemented simulator. The 
next level in the classification is laboratory experiments where the application has 
been tested in a laboratory environment. The final level, deployed system, indicates 
that the ABS system actually is or has been used by the intended end-users, e.g., traf-
fic managers that use a simulator for deciding how to redirect the traffic when an ac-
cident has occurred. If the authors of the paper belong to the intended end-users (re-
searchers), we classify the application as deployed if the authors draw actual conclu-
sions from the simulation results regarding the system that is simulated (rather than 
just stating that ABS seems appropriate).  

Evaluation comparison: If a new approach is developed to solve a problem which 
has been solved previously using other approaches, the new approach should be com-
pared to existing approaches. That is, answer the question whether ABS actually is an 
appropriate approach to solve the problem. Such an evaluation could be either qualita-
tive, by comparing the characteristics of the approaches, or quantitative, by different 
types of experiments. 

Validation: In order to confirm that an ABS correctly models the real system it needs 
to be validated. This can be performed in different ways, qualitatively, e.g., by letting 
domain experts examine the simulation model, or quantitatively, e.g., by comparing 
the output produced by the simulator with actual measurements on the real system. 

3   Results 

In table 1 the framework is summarized. Table 2 shows how the papers were classi-
fied according to the framework. If a paper does not explicitly state to which category 
the simulator belongs but there are good reasons to believe that it belongs to a particu-
lar category, it is marked by an asterisk (*). If we have not managed to make an edu-
cated guess, it is marked by “-“. 
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Table 1. Summary of the framework 

 Aspect Categories 

Domain 1. Animal societies   
2. Physiological systems   
3. Social systems  
4. Organizations   
5. Economic systems   
6. Ecological systems 
7. Physical systems   
8. Robotic systems   
9. Transport/traffic systems 

End-user 1. Scientists   
2. Policy makers   
3. Managers   
4. Other professionals 

Problem  
description 

Purpose 1. Prediction   
2. Verification   
3. Analysis   
4. Training  

Simulated entity 1. Living   
2. Physical artefact   
3. Software process   
4. Organisation 

Agent types 1 - 1.000 

Communication 1. no  2. yes 

Spatial explicitness 1. no  2. yes 

Mobility 1. no  2. yes 

Adaptivity 1. no  2. yes 

Structure (of MAS)  1. Peer-to-peer   
2. Hierachical   
3. Recursive 

Modeling  
approach 

Dynamic 1. no  2. yes 

Platform used NetLogo, RePast, Swarm, JADE, C++, etc. 

Simulation size 1 - 10.000.000 

Scale 1. Limited/partial   
2. Full-scale 

Input data 1. Artificial data   
2. Real data 

Distributed 1. no  2. yes 

Implementation 
approach 

Mobile agents 1. no  2. yes 

Maturity 1. Conceptual proposal   
2. Laboratory experiment   
3. Deployed  

Evaluation 1. None   
2. Qualitative   
3. Quantitative 

Results 

Validation 1. None   
2. Qualitative   
3. Quantitative 
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Table 2. The classification of the studied papers 
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[6] 4 3 1 3 2 2 1 1 1 2* 1 C++ 10 1 1 1* 1* 2 1 1 

[7] 4 3,4 3 1 - 2 2 - 2 - - - - - - - - 1 1 1 

[8] 4 1,2 1,3 1 4 1 1 1 1* 1* 1 - - 1 2 1* 1* 3 1 3* 

[9] 4 1,2 3 1,4 2 1 1 1 1 2* 1 RePast 60 1 1 1* 1* 3 1 1 

[10] 9 1,2 1 2 - 1 2 2 1 - 1 - 120 2 1 - - 3 1 1 

[11] 3 1 3 1 1 1 2 1 1 1 1 - 100 1 1 1* 1* 3 1 2* 

[12] 3,9 1 2 1,2 3 2 2 2 1 1 2 - 12000 2 2 2* 2* 2 1 1 

[13] 4 1,4 3 1 2 2 2 2 2 1 2 WEA 25* 2 2 2* 2* 2 1 3 

[14] 9 3 2 1 1 1 2 2 1* 1 1* - 100* 1 1 1* 1* 2 2 3 

[15] 3,6 1 3 1 3 1* 2 2 2* 1 2 Swarm  540 1 1 1* 1* 3 1 1 

[16] 5,9 2 3 1 6 2 1 1 1 2 1 Jade 7 1 2 1* 1* 2 1 1 

[17] 7 1 3 2 1 2 2 1 1 1 1* - 106 1 1 1* 1* 2 2,3 2 

[18] 5 1 2,3 1,4 3 2 1 1 1* 2 2 - 102 1 1 1* 1* 3 1 2 

[19] 3 1,4 2 1 1 1 2 2 1* 1 2 NetLogo 200 1 1 1* 1* 2 2 1 

[20] 1 1 3 1 2 1* 2 2 1 1 1 ObjectPascal 8 1 1 1 1 3* 1 3 

[21] 3 1 2 1 1 1* 2 2 1 1 1 - 250 1 1 1* 1* 3* 1 1 

[22] 2 1 2 2 3 2 1 1 2 3 1 Java 4 2 1* 2* 1* 3 1 3 

[23] 3 1 3 1 3 2 1 1 1 1 1 - 9 1 1 1* 1* 2 1 1 

[24] 3 1 3 1 1 2 2 2 1 1 2 Sugarscape 700 1 1 1* 1* 3* 1 1 

[25] 3,6 2 3 1 3 2 2 2 1 1 1 Cormas - 1 2 1* 1* 2 1 3 

[26] 3 1,2 3 1,3 3 2* 1 1 1 1 2 VisualBasic 10000 1 1 1 1 2 3 1 

[27] 4,7 3 3 1,2 5 2 2 2 2 1 1 C++ 1 1 1 1 1 2 1 1 

[28] 3 1 2,3 1 2 1 1 1 2 1 1 NetLogo 500 1 1 1* 1* 2 2 1 

[29] 4 2 3 1,2 3 2 2 2 2 1 1 RePast 61 1 2 1* 1* 3 2 1 

[30] 8 1 1,2 2 1 2 2 2 1 1 1 C++ 25 1 1 1* 1* 3* 1 1 

[31] 5 1 3 1 7 2 1 1 2 2 1 DECAF 3 1 1 1* 1* 2 1 1 

[32] 3 2 3 1 1* 2 2 1 2* 1 1 - - 1 1 1* 1 3* 2 2 

[33] 5 1 3 1 1 2 1 1 1 1 1 - 24* 2 1 1* 1* 2 3 1 
 

4   Analysis 

4.1   Problem Description 

The results indicate that ABS is often used to study systems involving interacting hu-
man decision makers, e.g., in social, organizational, economic, traffic and transport 
systems (see Fig. 2). This is not surprising given the fact that qualities like autonomy,  
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communication, planning, etc., often are presented as characteristic of software agents 
(as well as of human beings). However, as (some of) these qualities are present also in 
other living entities, it is interesting to note that there was only one paper on simulat-
ing animal societies and just two involving ecological systems. Very few papers are 
found on simulating technical systems, such as ICT systems, i.e., integrated systems of 
computers, communication technology, software, data, and the people who manage 
and use them, critical infrastructures, power systems etc.. The aim of such models 
might be to study and have a deeper understanding of the existing and emerging func-
tionalities of the system and analyze the impact of parameter changes. (The only pa-
per on simulating technical systems concerned robotic systems.) 

Social systems

Organizations

Economic systems

Physical systems

Robotic systems

Transportation and 
traffic systems

Animal 
societies

Ecological systems

Physiological 
systems

 

Fig. 2. The distribution of the type of domains simulated 

In more than half of the applications, researchers were the intended end-user. As 
can be seen in Fig 3., the most common purpose of the applications included in the 
study was analysis. However, no paper reported the use of ABS for training purposes 
indicating that this may be an underdeveloped area. 

 
Predict ion

Verificat ion

Analysis

 

Fig. 3. The distribution of  purpose 
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4.2   Modeling Approach 

The simulated entities are mostly living things, indicating that ABS is believed to be 
better suited to model the complexity of human (and animal) behaviour compared to 
other techniques. However, it should be noted that in some applications there were 
entities not modeled and simulated and implemented as agents. Hybrid systems of this 
kind are motivated by the fact that some entities are passive and are not making any 
decisions, especially in socio-technical systems. The model design choices for some 
of the aspects seem to be consequences of the characteristics of the systems simu-
lated. After all, the aim is to mirror the real system. These aspects include number of 
agent types, only about 15% of the applications had more than three different agent 
types, spatial explicitness (60% do use it), mobility of entities (50%), communication 
between entities (64%), and the structure of the MAS where a vast majority used a 
peer-to-peer structure (77%). However, as illustrated in Fig. 4, there are some model-
ling aspects where the strengths of the agent approach do not seem to have been  
explored to its full potential. For instance, only 9 of the 28 papers make use of adap-
tivity, and just 7 out of the 27 implemented systems seem to use dynamic simulations.  
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Fig. 4. The distribution of modeling aspects 

4.3   Implementation Approach 

Nearly half of the papers do not state which software were used to develop the ABS. 
In particular, it is interesting to note that the two papers with the largest number of 
agents do not state this. Of the agent platforms and simulation tools available, none is 
dominantly used. In fact, many of the simulations were implemented with C++ or 
programs developed from scratch. A possible reason for this may be that many ABS 
tools and platforms make limiting assumptions regarding the way that entities are 
modeled. The number of agents in the simulation experiments is typically quite small 
(see Fig. 5). In 50% of the papers the number of agents were 61 or less. The fact that 
most simulation experiments were limited covering only a part of the simulated sys-
tem, may be an explanation for this. The reasons for this are seldom discussed in the 
papers but are probably lack of computing hardware, software (such as proper agent 
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simulation platforms), or the time available to perform the experiments. Moreover, 
there may be a "trade-off" between the complexity of the agents and the number of 
agents in the experiments, i.e., that large sized simulations use relatively simple 
agents whereas smaller simulations use more complex agents. However, further 
analysis is necessary before any conclusions can be drawn.  
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Fig. 5. The frequency of different simulation sizes (number of agents) 

Many of the simulation experiments are conducted with artificial data, typically 
making simplifying assumptions. This is often due to reasons beyond the researchers' 
control, such as availability of data. As a consequence, it may be difficult to assess the 
relevance of the findings of such simulations to the real world problems they aim to 
solve. It seems as very few of the simulators are distributed, and no one is using mo-
bile agents. However, these issues are seldom described in the papers. 

4.4   Results 

We have not encountered any ABS applications that are reported to be deployed to 
solve actual real world operational tasks. The examples of deployed systems are lim-
ited to the cases where the researchers themselves are the end-users. The cause of this 
could be the fact that ABS is a quite new methodology, or that the deployment phase  
 

0

5

10

15

20

None Qualitative Quantitative

Evaluation Validation

 

Fig. 6. The frequency of different types and evaluation 
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often is not described in scientific publications. As illustrated in Fig. 6, less than half 
of the simulations are actually reported to be validated. This is particularly striking as 
it is in most cases the complex behaviors of humans that are being simulated. Also, 
comparisons to other approaches are very rare. 

4.5   Limitations of the Study 

Although the conclusions drawn from our study are valid for the work published in 
the MABS proceedings, a larger sample is probably needed to verify that they hold 
for the whole ABS area. There were a number of interesting aspects that we were not 
able to include in our study. For example, regarding the problem description, the size 
of the actual problem, i.e., the system being simulated would be interesting to know. 
Typically, only a partial simulation is made, i.e., the number of entities in the real 
system is much larger than the number of agents in the simulation. However, in most 
papers the size of the real system is not described and often it was very difficult for us 
to estimate the size. Another interesting aspect not included in this study is the model-
ing of entities. The representation of the behavior and state of the real world entities 
should be sufficiently sophisticated to capture the aspects relevant for  the problem 
studied.  We initially categorized the ways of modeling the entities in the following 
categories: Mathematical models; Cellular automata; Rule-based (a set of explicit 
rules describe the behavior of the agent); Deliberative (the behavior is determined by 
some kind of reasoning such as planning). Unfortunately, there were often not enough 
information in the papers concerning this aspect. Related to this is the distinction be-
tween proactive versus reactive modeling of entities, which also was very difficult to 
extract from the papers due to lack of information. Regarding the implementation, we 
wanted to investigate how the agent models were implemented in the simulation 
software. We found examples ranging from simple feature vectors (as used in tradi-
tional dynamic micro simulation) to sophisticated software entities corresponding to 
separate threads or processes. However, also in this case important information was 
often left out from the presentation. 

5   Conclusions 

The applications reviewed in this study suggest that ABS seems a promising approach 
to many problems involving simulating complex systems of interacting entities. How-
ever, it seems as the full potential of the agent concept often is not utilized, for in-
stance, with respect to adaptivity and dynamicity. Also, existing ABS tools and plat-
forms are seldom used and instead the simulation software is developed from scratch 
using an ordinary programming language. There may be many reasons for this, e.g., 
that they are difficult to use and adopt to the problem studied, or that the awareness of 
the existence of these tools and platforms is limited. 

Something that made this study difficult was that important information, especially 
concerning the implementation of the simulator, was missing in many papers. This 
makes it harder to reproduce the experiments and to build upon the results in further 
advancing the state-of-the-art of ABS. A positive effect of our study would be if re-
searchers became more explicit and clear about how they have dealt with the different 
aspects that we have used in the analysis. Therefore, we suggest the following check-
list for ABS application papers: 
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1. Clearly describe the purpose of the application and the intended end-users. 
2. Indicate the typical size of the system (that is simulated) in terms of entities 

corresponding to agents. 
3. For each agent type in the simulation model, describe  

a. what kind of entities it is simulating,  
b. how they are modelled (mathematical, rule-based, deliberative, etc.), 
c. whether they are proactive or not, 
d. whether they are communicating with other agents or not, 
e. whether they are given a spatial position, and if so, whether they are 

mobile 
f. whether they are capable of learning or not. 

4. Describe the structure of the collection of agents, and state whether this col-
lection is static or agents can be added/removed during a simulation. 

5. State which simulation (or agent) platform was used, or in the case the simu-
lator was implemented from scratch, what programming language was used.  

6. State the size of the simulation in terms of number of agents. 
7. Describe how the agents were implemented; feature vectors, mobile agents, 

or something in-between. 
8. State whether the simulator actually has been used by the intended end-users, 

or just in laboratory experiments. In the latter case indicate whether artificial 
or real data was used. 

9. Describe how the simulator has been validated. 
10. Describe if and how the suggested approach has been compared to other ap-

proaches.  

Future work includes extending the study using a larger sample, e.g., include other 
relevant workshops and conferences, such as Agent-Based Simulation, and journals 
such as JASSS, in order to reduce any bias. Another interesting study would be to 
make a comparative study with more traditional simulation techniques including as-
pects such as size, validation, etc. 
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Abstract. This paper discusses dynamic properties of peer-to-peer communica-
tion networks, which emerge from information exchanges among people.  First, 
we gather activity data of communication among people through questionnaires 
in order to categorize both information (contents) and people, then we develop 
agent-based simulation models to examine implicit mechanisms behind the dy-
namics. The agent-based models enable us to discover the quality of informa-
tion exchanged and the preferences of specific communication groups.  The 
simulation results have suggested that 1) peer-to-peer communication networks 
have scale-free and small world properties, 2) the characteristics of contents and 
users are observed in word-of-mouth communications, and 3) the combination 
of real survey data and agent-based simulation is effective.  

Keywords: Agent-Based Simulation, peer-to-peer communication, network 
analysis. 

1   Introduction 

This paper addresses models of dynamic peer-to-peer communications through agent-
based simulation and artificial social networks. The work is motivated by recent  
expanding use of personal information devices which have increased the content ex-
changes among people and have increased the number of interesting opportunities for 
communication. Additionally, a lot of SNS (Social Networking Site/Service) have 
appeared on the Internet. Also, Consumer Generated Media (CGM) has become popu-
lar allowing information exchanges at the consumer's initiative. Service providers 
have an increased interest in issues related to peer-to-peer communications.  

The main goals of our research are summarized as follows: (i) to analyze the com-
munications platforms from the bottom, and (ii) to propose a novel method and tech-
nique for these analyses, which will be used as market decision tools by service  
providers.  
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Our research follows three steps: (i) Data collection: We have used question- 
naire surveys on the communications among people; (ii) Communication model  
development: Using the data, we have categorized both information (contents) and 
people involved in the peer-to-peer communications, and (iii) Agent based simulation: 
We have carried out agent-based simulations to analyze the implicit mechanisms 
behind the dynamics.  

The main contributions of this paper are summarized in the following three points: 
(i) we propose an agent-based simulation system which enables dynamic peer-to-peer 
communication analysis, (ii) we evaluate the degree distribution of communication 
partners and the network density of communications, which will characterize the 
network features for various analyses, and (iii) we show that agent-based models 
enable us to discover the quality of information exchanged and the preferences of 
specific communication groups.  

2   Related Work and Research Objectives 

Information delivery between people known as “word-of-mouth” (WOM) is consid-
ered as one of the promising gears for marketing promotions (see [1],[2], for exam-
ple). It is well recognized that analyses of the information-spreading mechanisms 
reveal valuable information to service providers.  

On the other hand, there are a large number of results regarding social networks 
(see [3], [4], for example). Particularly, network structure analyses such as scale-free 
and small-world phenomena ([5], [6], [7]) have recently become one of the hot topics 
in the literature. 

The human communication analysis includes the following two issues: (i) most 
network structures in our society have a very dynamical nature and, thus, it is not 
enough to know just the static statuses at certain past time instances, and (ii) a number 
of different features have such strong impacts that, for example, it is not enough to 
know only the popular contents (products, services) or to identify only the users with 
heavy access records.  

For dynamic analysis, agent-based simulation (ABS) is a very useful approach, be-
cause: (a) ABS is good at analyzing macro phenomena by setting micro level charac-
teristics to each entity, and yielding the factors which determine the resultant network, 
and (b) ABS repeatedly examines different scenarios of interest. ABS has already 
been employed for the related analysis ([8], [9]); it has also been employed for mar-
keting and human-centered systems ([10]).  

We have extended our previous work ([11]) so that we utilize real-world survey 
data to improve the simulation model. The rest part of the paper is organized as fol-
lows. The developed agent-based simulation system is specified in Section 3 and 4. In 
Section 3, we define first the classes of contents and persons according to the results 
of the questionnaire survey, and then we built a model of human communications 
employing the results of the survey and other data from online-sites, as well as the 
existing theory for network growth. Section 4 describes the agent-based simulation 
we have developed based on the model established in Section 3. The considered ex-
perimental setting and the simulation results on evaluation of the degree distribution 
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and the network density distribution are given in Section 5. Finally the main conclu-
sions and directions for future work are given in Section 6. 

3   Model Description 

This section provides a basic simulation model and data collection for model generation. 

3.1   Basic Concepts of the Artificial World 

The basic assignment is as follows: (i) Each “node” in the network is a person and a 
“network edge” corresponds to a connection between two persons; and (ii) we assigned 
each person to an agent for information delivery via peer-to-peer communication.  

In peer-to-peer communication, each agent makes edges by choosing the informa-
tion to be sent to /received from another agent or partner. To choose the partner, node 
attributes such as preference similarities and the advantages of having a node with an 
edge are used.  Therefore, the underlying model of peer-to-peer communication is 
considered to be a part of an extended Barabasi and Albert (BA) model ([12]).  

However, the mutual links between people do not grow infinitely since they con-
verge to a specific value. As part of the dynamic process a node may make new favor-
ite edges while the other edges disappear with time. This mechanism corresponds to 
the deactivation model described in [13],[14]. Therefore, the peer-to-peer communi-
cation networks considered in this paper follow a model that combines the extended 
BA model and the deactivation model. 

The selection of a communication partner (agent decision making rule) depends on 
both of the following two properties: (i) the persons to communicate, and (ii) the 
information (contents) to be sent and/or received. Accordingly, we categorize the 
people and the contents as follows:  

- By clustering the contents along the characteristics implied by their distribution 
within the considered system;  and 

- By clustering the persons according to the contents in their possession and ac-
cording to the volume of transactions they are involved in, i.e. amount of the re-
lated communications assuming a constant rate. 

To define the agent decision making rules, we have used the above clusters of the 
contents and persons. As for the deactivation criterion, the limit of the transaction 
volume related to each person is employed. 

3.2   Data Collection for Model Generation 

3.2.1   Clustering the Contents and Persons 
In order to identify the clusters of contents and persons, we have carried out the fol-
lowing questionnaire surveys: 

The questionnaires were designed to gather information on daily communications 
of the following two groups of subjects with 78 persons in total: (i) Group1: 30 busi-
ness people ranging in age from 20 to 50 (male: 60%, female: 40%), and (ii) Group2: 
48 students around 20 years old (male: 30%, female: 70%). 
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The questionnaire required the subjects to:  

- select the contents which they usually share with others from 30 listed content cate-
gories; if the preferred category is not listed among the 30 given, it could be added 
in the space provided;  

- designate the number of partners they communicate with (for example,  between  
just 1, or 2 to 3,  or 4 to 5,  or 6 to 7, and so on);  

- choose the frequency of communication (for example, once a day, 2 to 3 times a 
week, 2 to 3 times a month, once a month, or once every 2 to 3 months);  

- rate on a 1 to 5 points scale (5: very good to 1: very bad) the information they 
send/receive1.  

The collected data was processed as follows.  
On a hierarchical clustering with group average method, the contents were catego-

rized to a two dimensional plot where the axes correspond to transaction volume for 
30 days and the number of people who share the content category, respectively.   
Figure 1 displays the result of the clustering when 5 clusters per group are allowed. 
C1 to C8 serve as labels of the clustered items: music, movies, and so on being the 
typical topics that belong to the cluster. The number inside the parentheses is the ratio 
of the contents corresponding to the cluster. For example in Group2, music and 
movies are shared by a wide range of people and communicated on frequently, while 
stocks and child-care are shared by few people and communicated on rarely.  

 

   

    30                               50                           70 

C8:group2: 
music, movies 
(30%) 

C6:group2: 
news, sports 
(19%) 

C7:group2: 
career, game 
(19%) 

C2:group1: 
career, gourmet
(11 5%)

C1:group1: 
news, sports 
(8%) 

C3:group1: 
music, movies 
(42%) 

C4:group1: 
cooking, fashion 
(27%) 

C5:group1:game,c
atoon(11.5%) 

Transaction volume (per day) 

Shared percentage between people (%) 

C5:group2: 
stock, child-care 
(10%) 

C2:group2: 
health, cooking
(22%) 

10 

5 

1.5 

 

Fig. 1. Diagram of clustering the contents categories 

                                                           
1 “Good information” depends on the subjects’ preferences. For example, “The restaurant was 

great”, “I like this movie”, and so on. “Bad information” has an opposite meaning. 
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Next, we categorized the subjects (persons) into 5 clusters based on contents cate-
gories related to them. Table 1 summarizes the clustering. For example, cluster 1 cor-
responds to the persons, who share contents from clusters C1 and C2. The column 
“distribution” shows the percentage of examinees in each cluster. 

Table 1. Clustering for persons (1) 

 
 

We have divided the subjects according to their transaction volumes over the 30 
days. The correlation between the number of the content categories and transaction 
volume is high (over 0.7). Accordingly, we relate the transaction volume based on the 
number of the content categories at each cluster, and Table 2 shows the result. 

Table 2. Clustering for persons (2) 

transaction (30 days)  
less than 150 no less than 150 

less than 15 100% 0% # of categories 
no less than 15 90% 10% 

Finally, we tested the inter-subject mean and variance through t-test and f-test, re-
spectively, regarding: (i) the number of information categories, (ii) the transaction 
volumes within a certain period of time, and (iii) the number of communication part-
ners. As the results indicate, there is a difference between the group mean that relates 
to the number of categories (t value is 4.0); however, there are no mean differences 
regarding the transaction volume and the number of partners (t-values are 2.5, 1.6 
respectively). In terms of variance, there are no differences between the two groups 
for any of the variables (f-values are 1.25, 1.03, and 1.38 respectively). Therefore, we 
are able to use the results in the simulation to identify the distribution of the commu-
nication types of persons. 

3.2.2   Setting the Evaluated Values for the Contents 
We have investigated the distribution of the evaluated values for contents  
and checked how they changed after distribution. This investigation covers the  
following points: i) distribution of the evaluation of arbitrary information (contents), 
ii) the level of evaluated value for the content to be sent (which level of contents re-
garding the evaluated value is sent to others and which one is not ), iii) the difference 
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between the evaluated value by the sender and the one by the receiver.  To estimate  
i) distribution, we have obtained the data from two online sites; restaurants sites 2(The 
number of restaurants is 3450, the number of comments for them with a 5-point scale 
(1 to 5) evaluated value is 78139) and movies sites3 (The number of movies is 2016, 
the number of comments is 4138). Then we measured the mean value of the 5-point 
scale evaluated value for restaurant data and movies data. To obtain the ii) the level of 
the evaluated value, we have used the results of the questionnaires to group1 and 
group2 described in 3.2.1. Finally for iii) difference of evaluated value, we have per-
formed the following experiment with 30 subjects: 

- picking up 10 contents from the online sites in i), and letting the subjects  select one 
from them;  

- allowing the subjects to use the 5-point scale (1 to 5) for the selected content; 
- allowing them to send the content to another person and asking the latter for evalua-

tion in the same manner. 

The number of contents is 18, the number of evaluated value obtained is 60, and 
the number of pairs (sender & receiver) is 18. We measured the distribution for the 
pairs of evaluated value by senders and receivers. 

Figure2 shows the distribution of the evaluated value for the contents (average of 
each content and average of all content).  Evaluation 3 and 4 cover 80% of all, and 
value 4 shares the top. 

Table 3 summarizes the distribution of the evaluated value for two subject groups. 
The results clearly indicate that value 3 covers 50%, and higher values (4 and 5) cover  
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Fig. 2. Distribution of evaluated values 

                                                           
2 http://gourmet.livedoor.com/, 2005/8/25 
3 http://community.movie.livedoor.com/, 2005/8/25 
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40%. Table 4 shows the difference between two evaluated values (“experiment 
sender/receiver pair” in the table) made by the senders and receivers. To compare the 
difference between two evaluated values, we have also calculated the difference for 
the randomly chosen pairs (“random pair”). Differences in the data between senders’ 
and receivers’ are slightly smaller than the ones between random pairs, and over 80% 
of them is one or less. 
 
Table 3. Distribution of the evaluated value          Table 4. Difference for the evaluated value 

      

group1 group2

5(very good) 10% 15%

4 30% 26%

3 50% 57%

2 5% 1%

1(very bad） 5% 1%                                

4   Simulation System Implementation 

This section describes the simulation system we have developed.  We define the in-
formation as contents and people as agents.  After setting the characteristics of the 
agents/contents described in section 3, the simulation analyzes the features of the 
network that accumulate through communication between agents for a certain period 
of time. Figure 3 shows an overview of the system.  

The simulation consists of two phases: initialization phase and execution phase. 
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Fig. 3. System overview 

Distribution 

Difference Experiment 

sender/receiver pair 

Random 

pair 

+/- 0 39% 27% 

+/- 1 44% 50% 

+/- 2 17% 23% 
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4.1   Initialization Phase 

At the initialization phase, the cluster type and number of the contents (information) 
are set based on the categorization, which is based on the clustering process devised 
in Section 3.2.1. Each content item has an evaluated value based on the measure in i) 
Section 3.2.2. In detail, 70% to 80% of all the content has an evaluated value 3 or 4 
and the rest of the content has a value of 1, 2 or 5.  In the same way, the cluster type 
and number of the agents are assigned. Then, all agents are given some content based 
on their described characteristics (Table 1), and are assigned a content send-
ing/receiving frequency based on Table 2. 

4.2   Execution Phase 

At the execution phase, each agent communicates with others based on their charac-
teristics and the characteristics of the content they have. Communication includes 
contents sending and receiving. There are two types of receiving: receiving directly 
from the partner or through a third person introduced by the partner.  Figure 4 illus-
trates the simulation flow. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Basic Algorithm of the Simulation flow 

Determination of how content is sent and received between agents is defined as an 
agent decision-making rule. This determination consists of two indicators: an indica-
tor for the contents to be sent/ received and one for communication between agents. 

Measures for the contents 
 

Table 5 shows the measures for sending/receiving the contents Ck between Agent Ai 
and Aj. Table 6 shows an overview of the functions. 

Each agent chooses a content category from his content list and decides whether 
the content should be sent or received by using the above criteria. In the case of  
receiving, if there is no appropriate content category in their content list, a content 
category is chosen from all content categories.   

 
 

Agent action for certain period (for example 1 day)
begin 
for all Ai ∊Agents in generated order 

if Ai should send/receive contents (send/receive timing) 
Ai chooses a content to be sent/received (Ck) 
for all Aj ∊Agents in generated order i≠j 

if  Ai should send/receive Ck to/from Aj 
・ Ai sends Ck to Aj or receives Ck from Aj 
・ set an evaluation value to Ck  

(in the case of receive) 
                end if     

(snip) 
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Table 5. Measures for choosing contents 

Action Decision whether Ai chooses Ck or not 
Send HasInterest(Ai,Gk)  AND SendRecvTiming(Ck) AND  IfSendEval(Ai,Ck)  
Receive Condition1： HasInterest(Ai,Gk)  AND 

     SendRecvTiming(Ck) AND IfSendEval(Ai,Ck) 
OR 
Condition2： SendRecvTiming(Ck) AND IfSendEval(Ai,Ck) 

Notation: Ai,Aj:Agent, Ck: Information(content), Gk: content category of Ck 

 
Table 6. Functions summaries 

SendRecvTiming(Ai) [Whether Ai should send/receive contents at that point or not] 
Return True…current time-preceding send/receive time is greater than 

send/receive interval 
False…other 

SendRecvTiming(Ck)[Whether Ck should be sent/received at that point or not] 
Return True…current time-preceding send/receive time is greater than 

send/receive interval 
False…other 

CommuAmount(Ai,Aj)[Transaction amount between Ai and Aj] 
Return True…transaction volume between Ai and Aj exceeds the average of all 

transaction volume of Ai 
False…other 

HasInterest(Ai,Gk) [Whether Ai is interested in Gk or not] 
Return True  … Ai has sent/received the contents which belong to Gk 

False … other 
IsSpecialist(Ai,Gk)[ Authority level of Ai for Gk] 
Return True…  Transaction volume of Ai regarding contents in Gk is greater 

than the average of whole transaction volume of Gk 
False…other 

HasSimilarity(Ai,Aj,Gk)[ Evaluation similarity for Gk between Ai and Aj] 
Return True… Difference of the evaluated value by Ai and Aj regarding contents 

in Gk is smaller than 2 
False… other 

IfSendEval(Ai,Ck)[ If Ck has an evaluated value which should be sent] 
Return True… Ck should be sent/received by its evaluated value by Ai (the prob-

ability in Table 3 is used for the evaluated value) 
False…other 

Notation: Ai,Aj:Agent, Ck:Information(content), Gk:content category of Ck 

Table 7. Criteria for partner 

Action Decision whether Ai send/receive Ck to/from Aj or not 
Send Condition1： SendRecvTiming(Aj) AND 

 ( HasInterest(Aj,Gk) OR  HasSimilarity(Ai,Aj,Gk))                    
OR 

Condition2:SendRecvTiming(Aj) AND CommuAmount(Ai,Aj) 
Receive Condition1： SendRecvTiming(Aj) AND HasInterest(Aj,Gk) 

OR HasSimilarity(Ai,Aj,Gk)) AND CommuAmount(Ai,Aj) 
OR 

Condition2： SendRecvTiming(Aj) AND  IsSpecialist(Aj,Gk)  
OR 

Condition3： From all agents who communicated with Aj ,find the partner 
with the above condition 

Notation: Ai,Aj:Agent, Ck:Information(content), Gk:content category of Ck 
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Selection of partner agent 
Table 7 shows the criteria indicating whether or not Agent Ai sends/receives the con-
tent Ck to/from Agent Aj. 

Set the evaluated value 
When agents receive contents from categories   in their contents list, they set the 
evaluated value, which has a difference of 0, -1, or 1, from the original evaluated 
value. If the content category is not in the given agent’s contents list, the random 
value function described in Section 3.2.2 is used to calculate a new evaluated value. 

5   Experiment 

5.1   Experimental Set Up 

We performed three experiments: a) first, with environments similar to the two ex-
aminee groups, b) second, with the same environments but with a larger number of 
people (agents), and c) third, different environments with monotypic agents, that is, 
we changed the parameters of the simulation (contents type and agents type).  In each 
scenario, different types of agents were created and we compared the results of com-
munication network. In c), all agents were in the same cluster (cluster 5). We ob-
served the distributions of the number of edges as well as the network density. 

5.2   Results 

Degree distribution 
Figure 5 to Figure 7 illustrate the distribution of edges. In Figure 5, graph a) is drawn 
on a log scale. However, to check the difference between graph b) and c), Figure 6 
and Figure 7 are drawn from real data, not on a log scale.  

 
 
 
 

 
 
 
 
 

 
Fig. 5. a) Degree distribution for experimental subject group 

 
 
 
 
 
 
 
 

 
Fig. 6. b) Degree distribution for expanded experimental subject group 
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Fig. 7. c) degree distribution for different attribute group 

We performed the experiment 10 times. We checked the differences between arbi-
trary pairs of groups by t-test, f-test. The compared value in t-test is the coefficient of 
determination for function approximation; y=αx-β(1.5≤β≤2.0) where x is number of 
edges and y is number of nodes. There is no difference between the two groups  
(T value is 0.07, F value is 1.105).  

Density 
To check the density of the network, we calculated the shortest path L and clustering 
coefficient C. L and C are defined in [6] and they are measurements for the small-
world property. They are calculated as follows: 
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where dij is the geodesic distance from node i to node j and n is the total number of 
nodes. 

Table 8 summarizes the results. We generated k-regular random graphs whose k 
are close to the mean degrees of each graph from experiment and compared the L and 
C of them to the graph from the experiment results. 

Table 8. Network density 

Experiment Graph k-Regular  
Random Graph 

 

K L C K L C 
Group1 N:30 4.6 4.2 0.57 5 2.23 0.13 a) 
Group2 N:50 4.5 2.9 0.64 5 2.65 0.09 
Extension of  Group 
1  N:300 

14.8 6.8 0.53 15 2.42 0.06 b) 

Group2 N:500 25.8 12.6 0.44 26 2.19 0.05 
Group1different 
properties N:300 

53.6 1.9 0.37 54 1.82 0.17 c) 

Group2 N:500 65.6 1.9 0.28 66 1.87 0.13 
N: Number of node, K: mean degree (number of edges) for each node, L: mean shortest path 
between arbitrary pairs of node, C: Clustering Coefficient  
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5.3   Discussion 

Degree distribution  
- In a) and b), the networks can best be described as scale-free, rather than being clas-

sified as related to random graphs. From the results, it is evident that a few people 
communicate with many others and that almost all of them communicate with a few 
people.  

- To check the high degree edges, there are high correlations between transaction 
volume per day and the number of content categories (the correlations are 0.68 and 
0.80 respectively).  

- In c) the total number of edges increased for the group in which all members have 
content categories belonging to the same cluster. This means the communication 
here is more active than in the environments in a) and b). However, it was polarized 
between the high-degree group and the low degree group. The results also reveal that 
communication in the group including the same type of people is not uniform and 
that it is divided into two groups: an active communication group and inactive com-
munication group. 

Density 
In [6], a small-world network is defined as the following: L is almost similar to the 
one in k-regular random graph (k is the mean degree of the network) but C is much 
bigger than the one in k-regular random graph. In our experiments, a) and b) meet the 
conditions. Accordingly, it is clear that they have small-world properties.  
Although c) has a lower density than a),b), it has a higher one than k-regular random 
graph.  

These are explained by the fact that people often make groups with those they fre-
quently communicate with. 

6   Conclusion 

This paper has analyzed peer-to-peer information delivery among people. For this 
purpose, we developed an agent-based simulation (ABS) system for different network 
types and dynamics. To set ABS system parameters, we utilized questionnaire survey 
data.  

We have obtained two main results: (1) the simulated network with the real-world 
parameters has scale-free and small-world properties, while the one with the different 
parameters (with monotypic agents) does not; and (2) we identified the characteristics 
of contents and users to obtain the desired network properties: From the marketing 
point of view, (a) focus on the small number of high-degree users assuming that they 
have a strong influence, and (b) send different information to each person in the high-
density network in order to spread information as widely as possible.   

The approach has suggested that through the ABS, we are able to analyze the com-
munication network in various circumstances with a dynamic environment.  

We should, however, consider carefully the parameters to ABS and the definition 
of agent behaviors. In this paper,  we have used data from the questionnaire survey, 
but the data is a small portion of real-world data, and it is very difficult to collect 
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exact data which represents the real-world. Accordingly, we also need to compare the 
results on real-world data from e-mails, blogs etc. 

Future work in this area includes (1) to develop methods for marketing purposes, 
particularly for finding high-grade users from the set of low-degree ones; (2) to exam-
ine network structures which will enhance communications; and (3) to compare simu-
lation results to real-world data (e-mails, blogs). 
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Abstract. Agent-based simulation is increasingly used to analyze the
performance of complex systems. In this paper we describe results of our
work on one specific agent-based model, showing how it can be validated
against the equation-based model from which it was derived, and demon-
strating the extent to which it can be used to derive additional results
over and above those that the equation-based model can provide.

The agent-based model that we build deals with human capital, the
number of years of formal schooling that an individual chooses to under-
take. For verification, we show that our agent-based model makes similar
predictions about the growth in inequality — that is the growth of the
variance in human capital across the population — as th equation-based
model from which it is derived. In addition, we show that our model can
make predictions about the change in human capital from generation to
generation that are beyond the equation-based model.

1 Introduction

We have been examining various sets of data related to human education. Typi-
cally, this data is collected in one of two ways: (1) very large, aggregate data sets
over entire populations (like whole cities, school districts, states or provinces) or
(2) very small, localized experimental samples. In both cases, the data is usually
analyzed using standard statistical methods. Often, the most highly publicized
statistics are the simplest, for example the mean and standard deviation of stan-
dardized test scores. These values are frequently the ones used to make policy
decisions. Occasionally, analysis is performed that examines how multiple factors
influence each other, such as the relationship between student-teacher ratios and
test scores, dollars per student and test scores, or class size and test scores. In
this example, it is difficult to analyze and understand the relationships between
these four factors (student-teacher ratios, test scores, dollars per student and
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class size) using standard statistical techniques; and as the set of factors in-
creases in number and complexity, the analysis becomes even more complicated.
Additionally, the statistical methods do not provide a means for examining stu-
dents who fall more than one standard deviation outside the mean (either above
or below). For example, maybe students who perform above the mean benefit
from higher student-teacher ratios and smaller class sizes, while students who
perform below the mean prefer lower student-teacher ratios but also smaller class
sizes. Further, the statistical methods do not provide a means for modeling the
interactions between students. For example, some students may learn better in
a homogeneous classroom, where all their classmates are of similar ability, while
others might do better in a classroom where they can learn from social peers
whose ability differs from theirs by more than a standard deviation. Our aim
is to develop models that can make use of these subtle interactions, and use
them to analyze the effects of education policy [11,12]. We are using agent-based
modeling to do this.

Agent-based modeling can help bridge the gap between macro and micro
data sets, using both interpolation and extrapolation techniques to combine
information and produce comprehensive, interactive and flexible environments
for experimentation. Agent-based modeling is particularly appropriate [9] for
systems in which there are many different loci of control [16], something that is
a particular feature of the kinds of system that we are interested in modeling.
In this paper, we describe results of our work on one specific agent-based model,
showing how it can be validated against the more traditional model from which
it was derived, and highlighting the extent to which it can be used to derive
additional results over and above those that the traditional model can provide.

2 Agent-Based Modeling

Agent-based modeling contrasts with traditional approaches to simulation, which
are typically built up from sets of interrelated differential equations. Such tradi-
tional models, commonly called equation-based models (ebms), have been widely
applied and generate useful predictions about the behavior of populations. So
why use agent-based models? There seem to be four main answers [2]: (i) agent-
based models are a natural way to describe systems comprised of interacting
entities; (ii) agent-based models are flexible; (iii) agent-based models capture
emergent phenomena; and (iv) agent-based models provide access to a greater
level of useful detail. In particular, modeling interactions between entities can be
much easier in agent-based systems than in ebms, even when one is comfortable
with the concepts of partial differential equations.

This naturalness and ease of modeling helps to make agent-based models
more flexible than ebms. As Bonabeau argues [2], agent models are typically
simple, and so are easy to understand and thus to change. It is usually easy to
increase the size of a simulation, adding new agents to see if interesting effects
are swamped by agent numbers, or taking agents away if interesting detail is
obscured. It is also possible to look at the results of simulations at different
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Fig. 1. Deriving an agent-based model from an equation-based model and then verify-

ing it

levels of detail—at the level of a single agent, at the level of some specific group
of agents, or at the level of all agents together. All these things are harder to
manage in ebms.

In addition to their inherent naturalness and flexibility, agent-based simula-
tions allow one to identify emergent phenomena. Emergent phenomena result
from the actions and interactions of individual agents, but are not directly con-
trolled by the individuals. Indeed, they have an existence that is partly indepen-
dent of those individuals—the classic example of an emergent phenomenon is a
traffic jam, which, while caused by the actions of drivers moving in one direction,
may travel in the opposite direction.

Emergent phenomena simply do not show up in ebms, but knowing about
them can be crucial. As an example, Greenwald and Kephart [3,6] showed that
while intuition suggested that frequent price updates would allow firms to steal
extra profits from their competitors, in fact it would lead to damaging price wars;
and [1] showed how an agent-based model identifies effects of changes in rent-
control policy that are beyond the reach of ebms. Such findings are also echoed
in ecology [4,13] where agent-based models (under the name “individual-based
models”) have been used for some years.

As others have described [2,9], it is possible to generate agent-based models
from more traditional models. Figure 1 shows the process by which an agent-
based model can be derived from an equation-based model. Presumably, the
equation-based model (labeled box “B”) was created after performing statistical
analysis on a raw data set (box “A”). By definition, the statistical equation will
be able to capture regularities in the data set and will provide a snapshot view
of the environment or phenomena which it models. The agent-based model (box
“C”) is created by taking each of the variables in the equation-based model and
the distribution of each of the variables, and then by defining agent behaviors
that will produce results falling within this distribution. While single behaviors
may contribute to one or two variables, the interaction between multiple behav-
iors can replicate the entire data set; and do so in an interactive environment
that allows for experimentation.
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The agent-based model can be verified by executing various scenarios itera-
tively, demonstrating that the parameter values stay within the expected confines
and collecting statistical data on these experimental runs—the same category
of values which were gathered to create the initial equation-based model. Then,
statistical analysis is performed on this experimental data (box “D”) to extract
summary statistics (box “E”) and these are then compared with the statistics
derived from the original equation-based model (box “F”). If the two analyses
agree, then the agent-based model has been verified. The fact that we can per-
form this validation is the reason that the work described here has been based on
an existing model. Doing this grounds our agent-based model in reality (since the
model we check it against was derived from census data), and gives us confidence
that the results we obtain by predicting beyond mere validation are reasonable.

3 A Model of Human Capital

The model that we consider in this paper is drawn from a paper by Kremer [7],
an article that derives a linear equation from US census data, and analyzes the
aggregate behavior of the model. The original model was derived to identify the
effect of the tendency for human societies to stratify by level of education—so-
called human capital. The reason that the model is important in our wider work
on modeling aspects of the education system is that it provides a mechanism,
derived from data and verified against that data in [7], by which agents choose
a level of education to attain. It can therefore act as a driver for the models we
have previously developed [11,12].

The model from [7] gives the level of human capital zi,t+1 of members of the
t + 1th generation of the ith dynasty as being:

zi,t+1 = kt+1 + α

(
zi,t + z′i,t

2

)
+ β

(∑n
j=1 zj,t

n

)
+ εi,t+1 (1)

The notion of “dynasty” and “generation” that we use here are based on the
definitions in [7]. Each generation of the ith dynasty has two children, one male
and one female. Each is assumed to then become the spouse of an opposite sex
member of another dynasty, forming a family which in turn produces one male
and one female child. One family from a given generation of the ith dynasty
remains in the ith dynasty, and one becomes part of another dynasty (the non-
ith dynasty of the corresponding partner). Thus there is a constant number of
members of each generation, and of each dynasty at each generation.

Breaking down the rather simple linear model from (1) we have:

kt+1 (2)

which is constant across dynasties, but may vary in time to capture exogenous
trends in education—for example legislation that requires a certain number of
years of additional schooling for given generations. This represents the basic level
of education that every individual has to undergo (“education” and “human
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capital” are used more or less interchangeably in this model). Kremer [7] gives
kt+1 = 6.815, and that constant value is what we adopt.

α

(
zi,t + z′i,t

2

)
(3)

measures the effect on the level of education of the t + 1th generation of the
education of its parents in the t-th generation. The effect of the term is to assign
to each child the average human capital of its parents, modified by α. Kremer
[7] computes a baseline value of α to be approximately 0.39, based on census
data. zi,t is the human capital of a member of the previous generation of the ith
dynasty, and z′i,t is the spouse of zi,t.

The next term:

β

(∑n
j=1 zj,t

n

)
(4)

does something similar to (3) but based upon the level of education of the par-
ents’ neighbors rather than the level of education of the parents themselves—
these are the j in the summation, and n is the size of the neighborhood. Kremer
[7] measures the baseline value of β to be around 0.15.

The final term in (1) is
εi,t+1 (5)

which captures a specific “shock” to the human capital in a specific generation
of a specific dynasty—for example the early death of a parent, requiring the
children to curtail their education (though this value can be positive as well as
negative). Once again we follow [7] in picking εi,t+1 from a normal distribution
with mean 0 and standard deviation 1.79.

4 Agent-Based Simulation

We have developed an agent-based model that is derived from the equation-based
model given above. The agent-based model is concerned with a fixed number of
agents, m in each generation, with m/2 dynasties, and 2 children per family.
For simplicity, each family has one male child and one female child. The basic
simulation loop, which executes once for each generation, has three steps given in
Table 1. The result of Step 1 is fixed by (1), and Step 3 is fixed by the requirement
to produce one male and one female child in each generation. Clearly the results
are going to depend on the way in which Step 2 is implemented, and our model
includes a number of variations.

The core of [7] is to determine, or measure, the extent to which sorting (that is,
the tendency for people to choose both spouse and neighbors with similar levels
of human capital) affects divergence in human capital between given dynasties as
generations proceed. The agent-based model includes two mechanisms by which
this sorting can mimic these choices: choice of spouse and choice of neighbor.
For choice of spouse, there are three models that an agent can employ:
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Table 1. The basic agent lifecycle

1. Establish level of z based on:
(a) Parents
(b) Neighbors of parents

2. Establish factors that influence z for children
(a) Spouse
(b) Neighbors

3. Generate children

No sorting: Agents pick partners at random.
Sorting: An agent with human capital z attempts to pick a partner with

a human capital value in [0.9z, 1.1z]. If there are no such agents that are
unmarried, the original agent picks the eligible agent with the highest human
capital.

Max-matching: Agents pick as their partner the agent with the human capital
value closest to their own.

In our experiments we need to be able to manipulate the correlation between
married agents’ human capital values. We achieve this by setting the probability
ps that a given agent uses a sorting method to choose a spouse. If ps = 0, then,
all agents will pick a partner at random. If ps = 1, then every agent will use
one of the sorting methods to pick a spouse. Figure 2(a) shows how varying
ps changes the correlation between spousal human capital. As elsewhere in this
paper, the error bars indicate one standard deviation above and below the mean
value. Here, and throughout the paper, the choice the agent makes with ps is
between no sorting and max-matching.

Given that the model in [7] is based upon census data, and that this has built
into it a geographic notion of neighborhood, that is the kind of neighborhood
used in the agent-based model1. Each dynasty has a unique location. Initial
positions for dynasties are picked randomly, and as each generation goes through
Step 2(a), the female child stays in the dynastic location, and the male child
“moves” to the position of the spouse. The dynastic location is allowed to change
between generations, modeling “sorting” between neighborhoods. Again we have
three possibilities:

No sorting: Step 2(b) involves no operation—dynasties do not move relative
to one another.

Sorting: Step 2(b) allows the families established in Step 2(a) to move to the
neighborhood with the highest human capital value that has room for a
dynasty to move in.

Max-matching: Dynasties move to the neighborhood that has the human
capital value closest to the parental average and has room for a dynasty to
move in.

1 As opposed, for example, to a “social neighborhood” based on the acquaintances of
the parents, which might not coincide with the geographical neighbors.
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Fig. 2. The effect of ps and qs. (a) The relationship between ps and the correlation

between spouse agents’ human capital values. (b) The relationship between qs and the

correlation between neighbor agents human capital values.

The human capital value of a neighborhood is the average value of the human
capital of the agents located in that neighborhood.

Again, we control the sorting effect probabilistically, with each dynasty having
a probability qs of moving at a given generation. qs = 1 means that all dynasties
will move, and qs = 0 means no dynasty will move. This probability, just like
ps, can be used to manipulate the correlation between the human capital of
neighbors, and this relationship is plotted in Figure 2(b). For all the experiments
in this paper, qs chooses between no sorting and max-matching.

The impact of these different sorting policies will clearly depend on the nature
of neighborhoods. We incorporated two types of neighborhood in the model:
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1. Moore neighborhood: [5] The neighborhood for each dynasty is the set
of locations directly around that dynasty—hence each dynasty has its own
neighborhood, and these neighborhoods overlap.

2. Fixed neighborhood: The whole area we simulate is carved up into fixed
neighborhoods, so several dynasties share the same neighborhood, and neigh-
borhoods do not overlap.

For the experiments described in this paper, we only used fixed neighborhoods.

5 Experiments

We implemented the model described in the previous section in repast [10],
a Java-based Swarm-like [14] tool developed at the University of Chicago for
agent-based modeling in social science applications. We handled the geographic
aspects by placing agents on an N × N grid, where at most one dynasty “lives”
in a single grid-square. By varying the size of the grid and number of agents
we can create environments of differing population density and have modeled
communities of up to 10,000 dynasties.

5.1 Verification

Having constructed an agent-based model of human capital from the equation-
based model in [7], we first need to “complete the loop” (as in Figure 1) by
performing a statistical analysis of the results from the agent-based model, ob-
tained when using the parameter values assumed in the paper, to show that our
agent-based model will achieve the same results as the equation-based model we
started with. This verification step is needed in order to justify further experi-
mental results that are obtained with the model.

The central result of [7], and the only quantitative result from [7] that we
can use to check the model against, is the prediction that increasing sorting—
which the paper takes to mean increasing the correlation between the human
capital values of the parent agents of a generation—will only cause an increase
in inequality—which the paper takes to mean that the standard deviation of the
human capital distribution grows generation by generation—when the value of
α is large. [7] demonstrates this by showing the effect of changing correlation
from 0.6 to 0.8 for various values of α. This result can be established though a
steady-state analysis of (1), and this is done in full detail in [7]. Since the latter
paper is based on census data, we take this as the experimentally determined
truth against which we compare the predictions of our agent-based model.

Our agent-based model does not give us direct control of the correlations, but
as we have already shown, we can, rather imprecisely, change the value of the
correlations by changing the value of ps. Running experiments on a 50×50 grid—
which allows us to deal with a population that is considerably larger than the
1500 individuals analyzed in [7]—we find that our model gives good agreement
with the predictions made in [7].
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Fig. 3. Parental effect on inequality. (a) The relationship between the parental effect

α and relative change in the standard deviation of the human capital distribution

when sorting is increased. (b) The relationship between the parental effect α and the

percentage change in inequality.

First, we plot the value of α against the change in the standard deviation of
the human capital distribution (expressed as a fraction of the standard devia-
tion) caused by switching from ps = 0.75 (which is a correlation between parental
capital of 0.6) to ps = 0.88 (a correlation between parental capital of 0.8). This
gives us Figure 3(a), which shows that the increase in standard deviation of the
human capital distribution, and hence inequality, that is caused by increased
sorting doesn’t start to grow until α exceeds 0.8. We can also plot the effects
in terms of the percentage change in inequality (as defined in [7]) rather than the
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Fig. 4. Other than parental effects on inequality. (a) The relationship between ps,

the probability of agents picking partners based on capital value, and the percentage

change in inequality. (b) The relationship between qs, the probability of agents picking

location based on capital value, and the percentage change in inequality.

increase in standard deviation of the human capital distribution. For ps = 0.88,
we get the relationship between α and inequality plotted in Figure 3(b).

To check that this change in inequality was really due to the change in α,
and not due to some other parameter in the model, we examined how inequality
changes when we vary such parameters. Figures 4 and 5, for example, show that
for α held at 0.39 and β held at 0.15, there is no significant change in inequality
if we change ps, qs and population density.

Note that the changes in inequality that we observe due to changes in α
hinge on the value of εi,t+1, the term in (1) that does not depend on the capital
values of parents or neighbors. If we run our model with εi,t+1 set to zero for
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Fig. 5. Other than parental effects o inequality. The relationship between population

density and the percentage change in inequality.

all dynasties and all generations, then inequality does not grow. Indeed, the
standard deviation of the capital distribution falls over time until all agents
have the mean value. This “seeding” effect of εi,t+1 is another prediction that
can be made from the analysis of (1).

Together these results—where statistics that can be extracted from the orig-
inal, equation-based model match against the predictions made by the agent-
based model—suggest that the agent-based model we have constructed ade-
quately replicates the essence of the model it was designed to capture.

5.2 Identifying New Features

As we discussed above, one of the advantages that agent-based models have
over equation-based models is that one can examine the model in greater detail.
Whereas equation-based models can only really be studied in terms of broad
statistical features—such as the results from [7] examined above—we can probe
agent-based models in considerable detail, discovering what happens to individ-
uals as well as to classes of individual. We have carried out such an investigation
into the human capital model.

The main result from [7], replicated by our agent-based model, is that on av-
erage inequality in terms of human capital grows over generations. The widening
standard deviation of the human capital distribution suggests that rich dynas-
ties get richer and poor dynasties get poorer. However true this may be at a
population level, it is interesting to ask whether it is true for all (or even most)
individual dynasties, or whether there is some mobility between dynasties with
different levels of human capital. It turns out that such mobility exists.

We divided our dynasties up into three “classes”—the quotes reminding us
that this terminology, while convenient, conflates human capital, basically years
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Fig. 6. Parental effect on “class”. (a) The relationship between the percentage of dy-

nasties that change “class” and α. (b) The relationship between the percentage of

dynasties that change “class” and β.

of formal schooling, with monetary capital and social status. We call dynasties
that fall within one standard deviation above or below the average human capital
for the population middle class, we call those more than one standard deviation
below average poor, and those more than one standard deviation above average
rich. We then examined whether dynasties moved between classes.

The results are given in Figures 6(a) and 6(b), which show the way that
the number of dynasties that are mobile in this sense changes for two different
values of α and β, respectively. When α changes, β is held constant and vice-
versa. These graphs show the total percentage of dynasties that move, and the
percentage that become richer and poorer. They show that, no matter what the
value of α and β, there is some mobility (at least 25% of the population, and
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Fig. 7. Other than parental effect on “class”. The relationship between the percentage

of dynasties that change “class” and population density.

as much as 45% of the population changes class). Furthermore this change is
symmetrical.

Note that this effect is separate from the growing inequality—because “middle
class” is always defined in terms of the current standard deviation, if inequality
was the only effect, the percentage of dynasties changing class would be lower
than the figure we find. What we see here is the result of mixing. That is,
individuals are choosing partners or neighbors who are sufficiently far above or
below them in human capital terms so that their offspring move from one class
to another.

We can follow up this investigation with a subsidiary one, checking to see
whether additional factors have an effect on the class mobility of dynasties. One
of the factors that we can imagine having an impact on the results we obtain in
the model is the density of the agent population. In terms of the model, popu-
lation density relates to the number of agents that are placed on the grid. Since
the neighbor effect is based upon a geographic notion of neighborhood, and since
neighbors certainly have an effect on class mobility — for example as shown in
Figure 6 (b) — then one might imagine that changing the density of the popula-
tion might have some effect on class mobility as well. However, this is not the case.
As Figure 7 shows, population density has no systematic effect on class mobility.
Carrying out similar investigations for the effects of ps and qs, Figures 8(a) and
8(b) respectively, again show no systematic effect on class mobility.

6 Summary

This paper set out to construct an agent-based model from a traditional,
equation-based model, and to show that (i) this model could be verified against
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Fig. 8. Other than parental effect on “class”. The relationship between the percentage

of dynasties that change “class” and (a) ps, the probability that a given agent chooses

a partner by human capital value, (b) qs, the probability that a given dynasty chooses

its location by human capital value.

the predictions make by the equation-based model; and (ii) this model could
identify new predictions that could not be obtained directly from the equation-
based model. Both these aims have been achieved.

This work fits into our wider effort to model aspects of the education system
[11,12], with the overall aim of being able to establish the impact of changes in
education policy (rather as [1] does for the case of rent control). As described
in [12], we have developed a number of models, including a model of inter-
actions in classrooms [11]—which, for example, shows the effects of different
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pedagogical techniques to overcome absenteeism—and a model of school
districts—which, for example, shows the effect of policies like “No child left be-
hind”. Our current work is to tie these models together, and, more ambitiously,
to tie them into a comprehensive simulation of the way that education fits into
the economy. This latter can be done, for example, by using the model in [8], a
model that relates education and student ability with their lifetime productivity,
and our interim results can be found in [15].
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comments.
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Abstract. An agent-based model of food web evolution is presented
and contrasted with a particular system dynamics model. Both models
examine the effects of speciation and species invasion of food webs, but
the agent-based approach focuses on the interactions between individu-
als in the food web, whereas the system dynamics approach focuses on
the overall system dynamics. The system dynamics model is an abstract
model of species co-evolution that shows similar characteristics to many
natural food webs. The agent-based model attempts to model a simi-
larly abstract food web (in which species are characterised by abstract
features that determine how they will fare against any other species).
The ultimate aim of this exercise is to explore the many of the assump-
tions inherent in the system dynamics model; the current challenge is
to simply replicate the system dynamics results using agent-based mod-
elling. Preliminary studies have revealed some underlying assumptions in
the system dynamics model, as well as some intrinsic difficulties in link-
ing the two different approaches. The paper discusses the key difficulties
in linking these different types of models, and presents some discussion
of the limits and benefits benefits that each approach may bring to the
analysis of the problem.

1 Introduction

Traditional models of predator-prey relationships, such as the Lotka-Volterra
equations, focus narrowly on single predator-single prey relations. Natural
ecosystems however typically involve a large number of species: one hundred
and eighty-two were identified in what is widely regarded as the most compre-
hensive study to date: that of Little Rock Lake, Wisconsin [1]. In these large
food webs, a species may be basal, in which case it ‘feeds’ solely from the envi-
ronment, but may have multiple species preying upon it; it may be a top species,
having no predators but possibly several species upon which it preys; or it may
be intermediate, in which case it would have one or more each of predator and
prey species. Figure 1 illustrates an example simplified food web of this type.
These different possibilities for interaction give rise to a dynamic network as well
as population, where the dynamics of the population affects the structure of the
network and vice versa. Several models of network structure for these large food
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webs have been proposed, as summarised by Dunne [2, Box 1], but these models
have been static structures, reflecting the network at a given point in time, but
not responding to any changes that might arise due to the population dynamics.
The system dynamics model introduced by Caldarelli et al. [3] and refined fur-
ther in [4,5,6,7], henceforth referred to as Model A, goes one step further than
most models in that it attempts to capture both population and network dy-
namics. Furthermore, it allows the introduction of new species to the web, which
can be seen either as evolved species (small variation on existing species within
the web) or invading species (completely new species, arriving for example on
ocean currents, or – more commonly – introduced by man).

EVIRONMENT

1 2 3 4

5 6 7

8 9

Fig. 1. An illustrative example of a food web. Species 1, 2, 3 and 4 are basal species,
5, 6, 7 and 9 are intermediate species, and 8 is the sole top species.

As noted by Parunak et al., agent-based models compete with “equation-
based” (system dynamics) models in many domains [8]; the domain of predator-
prey relations is no exception. (In truth, the two approaches should not be
seen as competing, but complementary. The work described here is one exam-
ple of a collaboration that is attempting to bridge the gap between the two
approaches, and explore their relative strengths and weaknesses.) Two-species
predator-prey relationships are commonly used as introductory assignments for
agent-based modelling (often presented as ‘wolves and sheep,’ or ‘foxes and rab-
bits’), and are also often explored in the context of multi-agent learning (for
example, Grefenstette’s work[9]). However as with the more traditional system
dynamics approaches, agent-based models of food webs rarely consider more
than a handful of species, and although they do allow for dynamic network
structures, they do not consider the introduction of new species to the web.
While contrasting agent-based and system dynamics models of predator-prey re-
lations, Wilson’s work should be noted [10], which resolved discrepancies between
an individual-based model (of the cellular automata variety) and “reaction-
dispersal” (that is, system dynamics) models of a single prey, single predator
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environment. This paper describes a similar attempt to create an agent-based
model of (multi-species) food web dynamics that relates directly to a particular
system dynamics model. The ultimate aim of the agent-based model is to explore
the effects of the assumptions of heterogeneity (both between species and within
species) that are enforced by the system dynamics model.

Agent-based modelling provides an alternate means for exploring the impli-
cations of the assumptions encoded in the equations of Model A. Some of these
assumptions have been explicitly stated by the authors of that model; others
have become apparent when decisions have had to be made during the con-
struction of the agent-based models. A third set of assumptions have become
apparent when considering the discrepancies between the two models, and these
are particularly the subject of ongoing investigations. The next section of this
paper will introduce the equations that govern the dynamics of Model A, which
will be followed by a description of the agent-based model. Section 4 looks at
the results of the models, before a discussion in Sect. 5 of some of the possible
reasons for the differences that appear and areas of ongoing investigation.

2 The System Dynamics Model

The description of the systems dynamics model that is presented here is an
abbreviated version of that given in [3]. As mentioned previously, this model
has been refined further in later work, but as the 1998 publication presents the
most simple form, this was selected for the initial study. The model is based
upon traditional models of predator-prey dynamics, but extended to deal with
multi-way interactions between species – for full details, readers should refer to
the original work.

The model has two distinct phases: the population dynamics for a particular
set of species in a food web, and the introduction of a new or mutated species
to the food web. The species that are used in the model do not correspond to
those in any particular natural ecosystem, but are stylised species, each defined
by a set of morphological or behavioural features. These features are themselves
abstract – represented by numerical values whose only purpose are to generate
the scores which determine what eats what as described below – but can be
conceptualised as things such as ‘sharp teeth’ or ‘fast runner;’ features which
could potentially give the species an edge over other species.

The model has a pool of K of these possible features, and each species is
assigned a subset of L of these features. In the majority of experiments us-
ing this model, K was set to 500 and L to 10. A K × K matrix of scores is
constructed, where the value mαβ at any position in the matrix describes how
‘useful’ feature α is against feature β. The matrix is constructed at the start of
a simulation run, is antisymmetric (that is mαβ = −mβα), has diagonal set to 0
(so any feature has no benefit (or disadvantage) when used against the same fea-
ture) and consists of random Gaussian values with mean zero and unit variance.
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The score of one species i against another species j is then defined as

Sij = max

⎧⎨
⎩0,

1
L

∑
α∈i

∑
β∈j

mαβ

⎫⎬
⎭ (1)

where α runs over all the features of species i and β runs over all the features of
species j. A positive score Sij indicates that species i is adapted from predation
on species j. At the start of a run, the world is assigned a set of L features, and
this determines which species can be basal. Species with a positive score against
the world are adapted to feed directly from its resources, which are input at a
constant rate R and distributed amongst species as a function of their score,
while those with a zero score against the world must prey upon other species in
order to survive.

At the start of a run the population is seeded with a single individual of a
random species (that is, with a random selection of K features from L). The
population of that species grows according to the equations described below
until a new ‘evolutionary time step’ is reached. This occurs at the first of either
1) the entire population drops to zero, 2) the entire population stabilises (there
may be fluctuations, but these are cyclical), or 3) a set maximum number of time
steps elapses without population stabilisation. At this point, a single individual
in the existing population is removed, a single feature of the species of that
individual is replaced by another, and a single individual of that new species is
put back into the population. This species may become extinct, may cause other
extinctions, or the food web may simply adapt to accommodate it. This process
continues over time, allowing the food web to grow and evolve.

The short-term population dynamics of a species is given in terms of the
population sizes of the other species in the ecosystem

N(n, t + 1) = γn,0R +
∑
n′

γn,n′λN(n′, t) + γn,nλN(n, t) (2)

where N(n, t) is the number of resources (assumed to be equal to the number of
individuals) of species n and λ is the fraction of the resources of the prey that
is converted into resources of the predator (the ecological efficiency). γn,n′ is the
fraction of resources of species n′ that is obtained by species n, and is used to
capture the idea that the most efficient predator of a given species will be the
most successful at gaining resources from that species; other predators will gain
relatively little. To achieve this, the main predator of species n′ is defined as the
one with the best score against n′:

SM
n′ = max {Sn,n′} (3)

where n is a predator of n′. The predators of n′ will obtain a share of the available
resources according to

Fn,n′ = max
{

0,

(
1 − SM

n′ − Sn,n′

δ

)}
(4)



Contrasting a System Dynamics Model and an Agent-Based Model 61

where δ is a parameter of the model that determines the strength of competition
between species – the smaller δ, the stronger the competition. γn,n′ is then
defined as:

γn,n′ =
Fn,n′∑
m Fm,n′

(5)

γn,n is however a special case, being equal to -1 if n has at least one predator
species, or 0 otherwise.

2.1 Explicit Assumptions in this Model

A key assumption in the model is that the constants (δ and λ) and equations
for all species are equal. This was a deliberate decision of the authors, in part
for simplicity but also because they wanted flexibility for species to take any
position in the food web and for that position to change as the web evolved.

The value of the ecological efficiency was kept constant for the majority of
the experiments, at λ = 0.1. The value of δ, the competition parameter, was
selected by observing that all scores Sn,n′ are of the order 1, and that when a
single feature is changed, the score changes by an amount of the order of 1/L.
Thus δ should be roughly this size. (If δ � 1/L, even very uncompetitive species
will be allocated some resources, whereas as δ → 0, only the main predator will
gain resources.) For the experiments presented in [3], values of δ from 0.05 to 0.2
were used. R, the total number of resources in the environment, was also varied
over the runs, from 103 to 106.

As stated previously, the model assumes that N(n, t) represents both the
number of resources in total of species n and also the number of individu-
als of species n. This turns out to be one of the key difficulties in reconciling
the system dynamics model and the agent-based model, as will be discussed in
Sect. 5.

The resource distribution equation, used to ensure that the strongest preda-
tors gained the majority of a species’ resources, was noted by the authors of this
model to have been too simplistic: the food webs that were evolved using this
equation developed into impervious webs that could never be invaded by new
species – something that is not seen in nature. Later refinements of the model
(introduced in [4]) used a more sophisticated means of resource distribution,
introducing further parameters and assumptions. While agent-based analogues
of these refined equations have also been explored, they did not produce signifi-
cantly different results to those presented here, so these remaining assumptions
are ignored here.

3 The Agent-Based Model

One of the aims when constructing the agent-based model was to capture the
system dynamics model as closely as possible. However in an agent-based simula-
tion the system-level behaviour should emerge from the interactions of individual
agents, whereas the system dynamics approach attempts to explicitly encode the
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system-level behaviour. Thus the aim here was not to try to directly translate
the equations from Model A into behaviours for the agents in these models, but
rather to encode the motivations behind the equations. The match between the
model presented here and Model A is not yet fully successful, although some
likely causes for this have been identified, as will be discussed in Sect. 5, and are
being investigated as part of the ongoing work on this project.

In the agent-based model, R, the number of resources added per time step, is
used as it is in the system dynamics model. Similarly, λ, the ecological efficiency,
is used to determine the number of resources an agent receives from a ‘kill’. δ
is also used in the agent-based model, but whereas in Model A this is used to
determine the fraction of resources obtained from a species, in Model B it is used
to ‘truncate’ the score of one agent against another, in that an agent of species
i can only eat an agent of species j if SM

j − Si,j < δ.
Model B uses a K × K matrix of feature scores in the same way as Model

A, with species being defined by their particular set of L features. This ma-
trix is also used to generate species scores in the same manner as in Model A,
using (1).

A single time step in the Model B consists of the following sequence of events:

1. If the population is 0, a new individual is created, with a random new species.
(This happens both at the start of the simulation and also if all species
become extinct.)

2. If this is the start of a new evolutionary time step (that is, current population
is stable or a fixed number of steps have elapsed), do a mutation. This
involves selecting an individual and randomly modifying a single one of its
L features.

3. The agents in the population are shuffled, then for each agent

(a) The agent randomly selects a prey, or the world, upon which it will feed,
with weighting of prey versus world corresponding to the total population
versus number of world resources.

(b) If the agent can feed upon its prey (or the world as the case may be),
the prey (or a fraction of the world’s resources) is consumed, with the
agent receiving a proportion, λ of the prey’s resources.

(c) If the agent received enough resources while feeding (that is, its total
resources > 1), it will reproduce. Offspring are given the agent’s excess
(over 1) resources; the agent is left with 1 resource in its stores.

(d) The agent’s age (which as yet is unused) is incremented.

4. After each agent has been stepped in this manner, any agents that were born
during this process are added to the main population.

5. Any agents which died (due to being killed by a predator) are removed from
the population.

This is the most simple form of the model, forming a starting point for further
exploration.
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4 Preliminary Results

Before considering the model results, a few comments on the measures of com-
parison. Firstly, as noted by many ecologists (see [11]), there are considerable
difficulties in getting reliable data on real food webs. One of the difficulties is
the issue of defining ‘an ecosystem.’ Typically, an ecosystem is said to encom-
pass some geographic region such as a lake, a desert or an island, but there
will always be species within the food web of such an ecosystem that do not
adhere to these geographic boundaries, and thus may feed upon (or be preyed
upon by) species that are outside the considered ecosystem. Furthermore there
are tremendous difficulties in gathering data on food webs even for limited ge-
ographic domains. Nevertheless the authors of Model A have used data from
a number of experimentally studied food webs (see [3, Tab. 3]) for comparison
against their own. The measures of interest are: number of species, number of
links, links per species, average level (where the level is defined by the short-
est number of links to environmental resources), maximum level, percentage of
basal, intermediate and top species, percentage of links between different species
types (i.e. TB, IB, II, TI), and ratio of prey to predators.

Caldarelli et al compare their model against a range of real world data [3].
In that analysis, the authors report plausible food webs emerging after 250,000
speciation steps (where a ‘step’ is when a new species is introduced) for values of
R in the range of 103–104, although it is noted that there is an inverse relationship
between λ and R – that is, if R is increased while λ is decreased, the structure
of the resulting food web has the same basic properties.

One of the downsides of the agent-based approach is the computational com-
plexity of the system – the more individuals that there are, the longer it will
take to run. In Model B, the time taken for similar size runs seems comparable
to that of Model A, however as the complexity of each individual’s calculations
increases, agent-based models slow down. While the agent-based model gives the
possibility for exploring heterogeneity, this will have a performance cost, but it
is hoped that it will be possible to limit this to a linear increase in time taken.

The early stages of Model B runs show some promise, with multiple species
managing to co-exist. Figure 2 shows the time series of populations on two
different runs. The first run is one in which the environment is relatively benign
(that is, many species are able to feed upon the environment). The second has
a more harsh environment, in which most species cannot feed directly from
the environment – they must prey upon the few species that can. The first case
particularly illustrates some characteristic behaviour of population change. Many
new species never find a niche in the existing food web, but some do, sometimes
causing the extinction of other species as a result. The benign environment
particularly demonstrates how the introduction of a new species can change the
balance of a population. Even when it exists only in small numbers, it can cause
the population of other species to vary significantly, such as seen at around time
step 12,500, when species 16 is introduced, allowing the population of species 8
to increase.
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(a) A relatively benign environment

(b) A harsh environment

Fig. 2. Population dynamics for two different runs of Model B

Figure 3 shows snapshots of the food webs of the same two runs at t = 20000.
The numbers on each node represent the unique identifier of the species and,
in parentheses, the number of individuals of that species. Rectangular species
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are those getting at least some of their resources directly from the environment;
those with solid colours are feeding off at least one other species. In the benign
environment, three basal species co-exist with one that feeds both on the envi-
ronment and one of the other basal species. It should be noted that this is only
at a particular point in time: at the next time step, they may all feed only from
the environment, or other species may be eaten. In the harsh environment, a
predator-prey relationship has evolved. As can be seen from Fig. 2, this is just
one in a series of such relationships, with previous predators being driven out
by the new one. (There are also many species that have not had any impact on
the food web.)

(a) The benign environment (b) The harsh environment

Fig. 3. The food web structure for the same two runs at t = 20000

The problem with Model B is that complex food webs (containing more than
two levels) do not arise, even for runs over extended periods. Reasons for this are
discussed in the next section. This issue must be resolved before the exploration
of heterogeneity in species and/or agents is undertaken.

5 Discussion

Model B is deliberately an extremely simplistic agent-based model of a food
web. In particular, the decision to use a non-spatial representation for agents
was driven by the fact that Model A does not have a spatial representation.
However in an agent-based approach it does not make sense to have a global
view of the system, and so agents should not use global knowledge in selecting
their prey. The problem is that the random sampling used in Model B can give
an individual agent a distorted picture of the population, and this leads to over-
predation of species, and a lack of stratification of the food web.

Nevertheless, Model A does not include any notion of a spatial representation,
yet it manages to produce a realistically-structured food web. Furthermore, ex-
periments that introduced a form of spatial representation to Model B did not
produce significantly different food webs to those produced by Model B. This
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slavish emulation of what might be seen as a fault of Model A might seem
counter-productive, but one of the purposes of this research is to draw a bridge
between the two approaches. The aim is to first replicate the behaviour of Model
A, and then examine how variations (such as spatial distribution or heterogeni-
ety) impact upon this behaviour.

What appears to be of far greater importance is the discretisation that is
enforced by the agent-based model. In Model A, there is no distinction between
the number of resources in a species and the number of individuals in a species.
In Model B, each agent represents an individual of a particular species – thus
a discrete number of individuals – but each agent has a continuous variable
representing its resources. Because each agent gains only 10% of the resources of
its prey, the number of resources at any given time step will almost certainly not
be equal to the number of individuals. This is reflected in the fact that the model
is extremely sensitive to the way in which agents reproduce: the results above had
agents giving only their excess resources to their offspring; the dynamics changed
significantly if this was reversed (that is, giving the majority of resources to
offspring) or shared equally. Discussions with members of the systems dynamics
modelling team are currently in progress to try to resolve this issue.

5.1 Future Development

One enhancement that has been considered is to treat the system as closed, so
that rather than resources being added to the system at each time step, the
system is initialised with a certain number of resources and these must be main-
tained in one form or another within the system. Thus environmental resources
would be consumed by first level individuals, which would in turn be consumed
by individuals of higher level species, with the excess (since the predator gets
only a fraction of the prey’s resources) being returned to the environment. Pre-
liminary experiments have shown that this variation has little impact on the
system behaviour, nevertheless it is something that many ecologists consider to
be important, and will be explored further when the differences between the
models have been resolved.

Another variation is to allow agents to store resources, giving them a buffer
which would allow them to survive in the event of a scarcity of prey. Tied in
with this would be the idea that agents require some resources simply to survive,
which would be consumed at each time step whether or not they found food. In
the current model, an agent can survive until it reaches old age in the absence of
prey, even if it does not harvest any resources. This seems unreasonable, but the
preliminary experiments which have added this concept of subsistence resources
and a buffer have not produced markedly different outcomes.

However perhaps the most important potential of the agent-based system is
the possibility of heterogeneous behaviour. To date this concept has not been
explored, but it would seem reasonable that different species could and should
have different parameters to represent a range of characteristics. For example,
different species could have different average life spans, ecological efficiencies,
subsistence levels and, if spatial representation is added, movement abilities.
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These variations in parameters could be linked to the feature set of the species
so that, for example, an agent that scored particularly well against a range of
species might have a higher subsistence level than average (representing a larger
body mass or higher metabolism perhaps). Beyond this variation in parameters,
different species might even have different behaviours (for example, different
foraging strategies).

6 Conclusions

The agent-based model that has been presented here represents the first steps in
replicating and extending the systems dynamics approach to food web modelling
of Caldarelli et al. While there are still some issues to be resolved, the preliminary
model shows a certain level of correspondence to the system dynamics model,
and the key issue in relating the two – that of discrete versus continuous measures
– has been identified. Ongoing work is aimed as resolving this issue in order to
progress to the next stage of studies.

The agent-based model will allow the exploration of a range of variations that
would be difficult (if not impossible) to encode in the system dynamics model.
The system dynamics model has provided some results that are of interest to
ecologists (for example, it appears to indicate that catastrophic extinctions are
extremely unlikely); agent-based modelling provides a tool for further exploration
of these results, and possibly an understanding at the micro level of why they
are so. Furthermore, the agent-based models provide the opportunity to examine
the impact of the assumptions that are encoded in the system dynamics model.
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Abstract. Abstract. In this paper we analyse the roosting effect among
artificial vampires as a way to preserve altruism from cheaters exploita-
tion. We simulate the formation and maintenance of new social struc-
tures (roosts) from initial populations as a consequence of both demo-
graphic growth and social organisation. Food-sharing among vampire
bats (Desmodus Rotundus) is a well-known form of altruism, necessary
for the survival of this species, supported by wide ethological evidence.
By means of simulation, we study the performance of the system under
varying mutation rate (giving rise to cheaters that exploit the altruis-
tic mechanism) and roost size. Results show that the roosting effect can
cope with sensible mutation levels. Moreover, the most robust size of
roosts indicated by our simulations is shown to be comparable with the
size actually found in nature.

1 The Sociobiological Debate

According to Group Selection Theory (GST), biological evolution can operate
also on groups, and not only on individual organisms. Aggregates are considered
so that the fitness value for individuals become the sum of an individual contri-
bution and of a group contribution; in the interesting cases in which these parts
are in contrast, it is the context to decide the one to prevail. Popular until the
mid-sixties [16], GST underwent severe critiques from among sociobiologists [13].
Inspired by the principle of inclusive fitness, which looked at individuals as ve-
hicles for genetic reproduction, some theorists [9] explained non-kin altruism in
terms of reciprocity, i.e. the probability of donors being reciprocated when needy,
rejecting any solution in terms of group. Later, GST has been re-proposed [15],
in a variant defined as multilevel selection theory. While standard evolution takes
place at individual level, groups defined by a common set of characteristics may
compete on the same evolutionary stage, and act as units of selection. A given
habit or trait characterising one group may increase its fitness and therefore its
preservation.

2 Altruism and the Roosting Effect

In nature, examples of altruism abound [2]. Inter-specific mutualism was doc-
umented among lycaenid butterfly larvae and ants [6]. Between mammals the
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most famous example of pro-social behaviour is blood-sharing in vampire bats
[10],[12], a behaviour in favour of starving, unlucky hunters. Ethological observa-
tions and even experiments [11] are often interpreted as supporting the inclusive
fitness explanation, based on the evidence that animals - in this case, vampire
bats - give help to recognised individuals (possibly once-donors, or at least po-
tential helpers).

However, this explanation is not fully satisfactory. How to tell the difference
between individual vs. in-group recognition, by means of natural experiments, if
a group is small enough as to allow individuals to meet all others at least once?
The species studied by Wilkinson lives in Central America, in small groups (a
few dozen individuals) inhabiting the cavity of trees. These basic units are called
roosts. As all tree-roosting bats, vampires live in multiple roosts located on differ-
ent trees in a highly dynamic social environment, moving in subgroups between
several roosts on a regular basis, even every few days. Their diet consists of
ingesting each day an amount of fresh blood, which they suck from herbivores.
However, each night about 7% of the adults find no prey to parasite. In these
occasions, they can survive thanks to luckier fellows regurgitating for them a
portion of the food ingested. Wilkinson, who studied this species in its natu-
ral settings, states that such behaviour depends equally and independently of
relatedness and an index of opportunity for reciprocation. Moreover, from the
ethological literature we know that:

1. relatedness within the roost is quite low (around .11);
2. females live in groups with all their children (all-mothering) and only the

alpha male has access to this group. Bachelors stay in a group of their own.
3. a vampire bat will share food only if it has spent at least 60% of its time

with the recipient.

In a previous simulative work [3],[8], we argued that roosting can blindly shelter
altruists. In the simulations, even a small percentage of non-helping individu-
als can bring to extinction a population composed by a single group. But the
natural division of the population into small units (roosts), apparently due to
environmental constraints (size of the tree cavities), allows for local variation in
the rate of non-altruists. As a consequence, a subset of the roosts, those that are
inhabited by a large majority of altruists, will survive the others, reproduce and
soon colonise the population. We defined this phenomenon as roosting effect. In
the case of vampire bats, the simulations showed that the roosting effect might
have been sufficient to eliminate an initial (even quite large) rate of cheaters.
However, roosting in nature does not seem such a black-and-white phenomenon
as was assumed in our previous simulations. In general, bats tend to be loyal to
small defined areas and to given individuals within these areas, but they also
display what has been named a fission-fusion [14] model of social behaviour: on
a given night, the colony would consist of multiple roosting subgroups, spread
among different trees within the roosting area. Indeed, according to [14], tree-
roosting bats are known to switch roosts every few days, but the same authors
admit that the motivation underlying roost-switching is not well understood.
Subgroups may break apart and mix as they move to different trees within the
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roosting area. How to combine the defence of altruism with a more dynamic
social organisation?

3 The Simulation

In the study of the evolutionary bases of social behaviour, analytical reasoning
and ethological findings have been found insufficient: the former cannot provide
generative [4] and out-of-equilibrium explanations of phenomena observed among
heterogeneous entities [1]; the latter instead do not easily allow for controlling
and manipulating experimental variables. An innovative turn was impressed with
a systematic and extensive application of multi agent-based modelling and sim-
ulation (MABS), that has more in common, methodologically, with the natural
sciences and engineering disciplines than with deductive logics or mathematics.
Indeed, it is closer to experimental than formal science [5]. Simulation is also con-
sidered as a new tool that can contribute to cope with the well known theoretical
difficulties for explaining and predicting the behaviour of complex systems.

We have already begun to show the impact of rigid roosts on the evolution of
food sharing among artificial vampires. Far from being interested in the etholog-
ical debate around the life of vampire bats per se, our goal is to model altruism
at an abstract level and in a non-arbitrary way. Starting from ethological data
[8], we developed a simulation platform to analyse the key features of altruistic
behaviour among Desmodus Rotundus. In a previous work, we have shown the
initial results: roosts can play the important role of eliminating a massive initial
presence of cheaters. However, in that work only rigid roosts were implemented,
and since no mutation was allowed in the composition of new roosts, cheaters
could not appear in altruistic roosts. In this work, instead, we will observe the
roosting effect with mutation.

3.1 Simulation Details

Agent behaviour. Every agent in the simulation was designed to reproduce the
essential traits of the hunting and social activity of vampire bats. Each simulation
time step, representing 24 hours of real time, included one daily and one nightly
stage. In the night, bats hunt. In substance, each night 93% of the population
finds food to survive until the next hunt, while the remaining 7% begin to starve.
Vampire bats do not accumulate resources: hunt is performed only for short-term
food consumption. Even if the average lifetime of these animals measures around
14 years, starvation and death are a constant menace to them, since each good
hunt gives them no more than 60 hours autonomy. As a consequence, for a
bat in isolation, two failures in a row are fatal. These are the harsh conditions
characterising the life of vampires, which face infrequent but lethal food scarcity.
In the simulation, agents perform about 1.65 episodes of double unsuccessful hunt
per animal per year. The only way to prevent starvation and death is receiving
help from fellows, under the form of regurgitation, which is what these animals
appear to do in nature. During the daily stage, the simulated animals perform
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social activities (grooming and food-sharing). In detail, the following actions can
be performed:

Groom. The condition for this action is that two agents are sorted out from
the same roost. In this simulation, grooming plays the only role of allowing
for help requests.

Ask for help. If an agent (the requestor) is starving, that is, went through two
consecutive hunting failures, it will request help to the current grooming
partner. The effect of a request will be either donation or denial. In the
former case, the requestor will ingest some blood and gain some hours of
autonomy. In the latter, it will die and be removed from the simulation.

Donate. This action can be activated only on request from the grooming part-
ner. Under normal conditions, the potential donor will honour the request
when possible, that is, if returning from a successful hunt. The effect is that
the donors lifetime is reduced and the recipients is increased. In accordance
with physiological data, donation is a non-zero sum interaction: the receiver
gains more time than the donor loses.

Deny help. The condition is that agent received a request for help. The effect
is the requestors death. In the simulation, an average bat will deny help only
if unable to donate - that is, if it failed hunting in the previous night. Some
agents, the cheaters, will instead always refuse help.

Each day, grooming pairs are formed by randomly coupling agents from the
roost population. As in the real world, in our model grooming has the effect of
increasing the probability of food-sharing among in-roosts: a starving bat will
turn to its grooming partner for help, and will avoid death if the partner is found
to be full (having had a good hunt). Because of the bats metabolism, the donor
will lose much less time than is gained by the recipient. In the simulation, the
donor loses an amount of energy allowing it to survive for six hours; this amounts
to losing a chance to ask for help during the next day, in case two failures in a
row follow the last donation. In this set of experiments, we set the number of
partners per day - for grooming and for eventual help request - to one.

In nature, female vampire bats may give birth to one single child per time;
they reproduce about every ten months. New-borns leave the roost as soon as
they are able to care for themselves. In the simulated experiment, individual
are identical at birth and sexless. They reproduce by cloning every ten months,
starting from the twentieth, in order to model the juvenile phase. To obtain a
reasonable rate of reproduction, at each occurrence each agent has 50% prob-
ability to clone. Although poorly realistic, this is a minimal condition allowing
for roost formation, which is the focus of our study.

Roost behaviour. As seen above, roosts define and limit the subset of agents
that one has the chance to interact with. The only interesting behaviour of roosts
is their splitting (the equivalent, at group level, of agent reproduction). In our
model, the only change in roost population (except for birth and death of in-
roosts) is the formation of new roosts when a critical mass of new individuals is
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reached. In the ethological literature this threshold is known to be in the range
of a few dozens in-roosts. The rationale underlying roost formation was made
to consist of their reproductive success: the more the in-roosts, the higher the
number of new roosts formed.

Parameters. The numbers obtained in the baseline experiment (with no
cheaters) match with what is known by ethological observations in presence
of help: the yearly rate of death for adults is about 24%. But what is even more
interesting, they also correspond to the results of a simulation carried on by
Wilkinson [11] in absence of help. As said above, help is rare but critical: roosts
in which all individuals deny help reduce their population by 82% in a year.

For simulation purposes, we have also introduced a carrying capacity, which
sets a limit to the number of agents present at the same time. With this pa-
rameter we mean to simulate the filling up of an ecological niche, and to avoid
overgrowth of the system. In substance, when the number of individuals in a
simulation - independent of the number of roosts - is reached, agent reproduc-
tion is inhibited and permitted again when owed to natural death - the number
of agents falls below the carrying capacity. In simulations with carrying capac-
ity, the population either becomes extinct, remains in the middle, or oscillates
around the carrying capacity. From our observations, if the carrying capacity
is high enough (from experience, 200 agents are enough) no destructive effect
occurs in the community of agents: once the population has reached the maxi-
mum, extinction never follows. Comments received during the workshop induced
us to examine also the effects of this parameter, and in the following we add also
a set of experiments with a carrying capacity value of 500; these confirm our
supposition.

The case under study presents two peculiarities. In the species under study,
any kind of wealth accumulation is impossible. Energy coming from a meal is
dissipated after two nights, so that there can be no such thing as a wealthy
individual. The lucky hunter of today has the same chances as everybody else to
starve tomorrow. Moreover, direct retaliation is simply impossible in the present
setting. The victim of cheating dies on the spot; asking for help is the last re-
sort, and with the further restriction we have introduced of one helping partner
per night, a cheater is a dangerous killer that is really difficult to find out. As
a consequence, no explicit mechanism for the punishment of cheaters has been
implemented. In the simulations, only starving animals asked for help, and were
helped by their addressees if these were both altruist and satiated. No bluff was
allowed. Agents had no memory of past interactions and could not calculate the
probability of reciprocation. Under these conditions, solutions seem to reside in
incentives or enforcement mechanisms, which are usually obtained by means of
cognitive artefacts like image or reputation. But is such a cognitive complexity
the only way out? In our previous work, in order to explore the effect of groups
on the evolution of altruism, simulations with mixed populations (altruists and
cheaters in variable combination) initially distributed over a given number of
roosts were run. During the simulation, roosts can either grow or collapse, de-
pending upon the survival and reproduction rates of their members. Without
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mutation, altruists and cheaters compete for the same niche, based only on they
initial ratio. Roosts give rise to new roosts if the number of young individuals
reached a given threshold, which we called launch size. This was meant as an op-
erational simplification of the notion of group selection and reproduction. Roost
reproduction leads a new roost being created, which contains one half (rounded
down) of the bats inhabiting the original roost; those selected for the new roost
are the younger bats. In that study [8], the phenomenon of roosting was found to
allow for roost selection in favour of the most altruistic roosts. The presence of
even one single cheater proved clearly disadvantageous as mirrored by the rate of
roost reproduction. The roosting effect, in the end, eliminates groups containing
selfish vampires. These have a better in-roost fitness, but play a destructive role
by gradually reducing the reproductive capacity of their roosts until extinction.
When some demographic catastrophe (triggered by cheaters themselves) leads
by chance to an earlier extinction of cheaters, the reproduction of altruists takes
off again and the number of roosts grows rapidly and indefinitely.

3.2 Implementation

The simulation model has been implemented on the Repast platform. Data anal-
ysis and visualization have been performed with R. Data and code are available
on request from the first author.

4 Evidence from Simulations: Resistance to Mutation
and Ideal Roost Size

In this study, our purpose is to analyse the effect of introducing mutation in
bats reproduction, in inter-action with the roost reproduction mechanism. We
already know that roost reproduction can drive away a substantial percentage of
cheaters, but what about a cheating trait that reappears randomly in the popula-
tion? Cheating behaviour could appear in nature in one of several ways - genetic
mutation, imitation or contagion, individual reasoning, vertical transmission -
the latter being implausible among bats. To simulate the return of cheaters, we
will use a generic mutation rate, leaving open the interpretation about where
the mutation could be originated. What is relevant from the evolutionary point
of view, of course, is that the cheating behaviour implies increased individual
fitness, what should contribute to its diffusion and fixation in the population.
In our previous work, the efficacy of the roosting mechanism was explained by
the random appearance of an all-altruistic roost, whose spawns will have a re-
productive advantage on all mixed (cheater-altruistic) roosts. In this way, the
initial population of cheaters will be driven out and the ecological niche soon
occupied by altruists only. However, this explanation leans on the impossibility
for the cheater trait to return once the initial population has been driven away.
In this paper, instead, we will allow cheaters to return through mutation. The
spawn of altruists will be a cheater with a fixed probability - the mutation rate.
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4.1 Hypotheses

This study was aimed to test the effect of mutation rate on the roosting ef-
fect that we know to be sufficient to drive out a relatively large (up to 30%)
sub-population of cheaters, thus supporting a multilevel interpretation of the
evolution of altruism, both in terms of individual and group fitness. The refer-
ence example in the real world is the vampire bats food-sharing. As previously
recalled, this species offers a clear evidence of the advantages of altruism on life
expectancies. However, it is unclear whether and to what extent vampires take
measures against cheaters. Wilkinsons findings refer to the comparison between
an all-cooperators condition Vs an all-defectors condition. What happens in in-
termediate conditions? Which is the minimal share of altruists for obtaining an
increase of the survival rate with regard to the all-defectors condition? Moreover,
does the survival rate increase effectively correspond to an increase of donors fit-
ness, or is it redistributed over the entire population? And if so, are individual
donors always refunded or do they sustain a share of the costs of redistribu-
tion? The latter question is crucial since if donors are not always reciprocated
in person or along their future generations, there is reason to question the recip-
rocal altruism interpretation, and to look for another concurrent explanation.
To actually support group selection (or, more appropriately, multi-level selec-
tion), the simplification of inserting only an initial percentage of cheaters must
be removed. In such a perspective, if the altruism trait, even if not beneficial for
the individual, can be accounted for in terms of its contribution to the fitness
of the group, even on the presence of mutation, we will have a much stronger
ground for supporting an explanation in terms of multi level selection. In other
words, vampires food-sharing could be seen as a habit that evolved thanks to
its positive effects on the fitness of roosts taken as wholes, rather than on the
individual fitness of donors. The first hypothesis that will be tested by means
of simulation will then be that our simulated system is actually able to survive
in presence of a mutation that allows the cheating trait to return. Moreover,
we will try to find out the maximum mutation rate that the system is able to
endure.

To test the second hypothesis, we observe that we have been using a fixed
roost size for starting the roost split (or reproduction) - what we call the launch
size. We employed a launch size of 20, which would imply an average roost size
of 10, roughly corresponding to what is found in ethological observations. Now
the question is, does this size have to do with physical constraints only (bats live
in tree holes, that have a limited capacity), or does it have something to do with
altruism? The second hypothesis is then: ideal roost size exists, and is roughly
correspondent to roost size found in nature. The first part of this hypothesis
states that there is an ideal size, that is, a roost size that can resist better than
any other to all levels of mutation. The second part of the hypothesis states that
this size is comparable - at least in order of magnitude - to the one actually
found in nature.



76 M. Paolucci and R. Conte

4.2 Findings

First Hypothesis: resistance to mutation. To find out the maximum tol-
erance of the system to mutation, several batches of simulations have been run
showing, as expected, that survival rate of agents is inversely related to mutation
rate. To show more precisely how this happens, we collected results from 1000
simulations with launch size fixed at 20, and mutation ranging from 2% to 4%.
The maximum number of agents present in the simulation is limited from a car-
rying capacity of 200 agents. We report the number of living agents after 50000
simulation steps as a function of mutation rate. As can be seen in Fig.1, despite
the wide variation between single experiments with the same parameter value, a
clear trend emerges. Findings clearly show support for our first hypothesis: the
system is able to withstand mutation rate, in this case up to 3.3%.
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Fig. 1. Box-plot of the number of living agents at the end of simulation (vertical) by
mutation rate (horizontal). Launch size fixed at 20, 50000 steps. Averages are repre-
sented by the central line; boxes and lines give the five numbers summary, dots are
outliers.

Second Hypothesis: Ideal roost size. To support the second hypothesis,
we run a first set of 3509 simulations, exploring a square of parameters where
the mutation rate changes from 0 to 0.5 and the launch size from 20 to 300.
To visualize how agents react to the change of parameters, as a first step we
calculate the average number of living agents at fixed parameter combinations,
and show the result in a level plot (Fig. 2) from which it is evident how the area
where the system survives and expands (light) is decreasing with the increase
of the launch size. When the launch size approaches 200 (corresponding to the
carrying capacity), only mutation rates less than 1% can be tolerated, while in
the lower area, down to a launch size of 20, mutation can be tolerated up to 4%.
What about the ideal roost size? If there is a decreasing survival potential when
launch size grows over 20, we can also argue that the situation must change
when going to lower values, at least when the roost size reaches one, when no
roost will be present in the system, that will extinguish even without mutation.
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Fig. 2. Level plot of average number of living agents by launch size and mutation rate.
More agents correspond to lighter colours. Each area is the average of 11 simulations.
There is a clear decrease of survival for high values of launch size.
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Fig. 3. Level plot of average number of living agents, in a zoomed area. More agents
correspond to lighter colours. Each area is the average of 200 simulations. Note the
maximum survival area for values of launch size comprised between 17 and 27.

As a consequence, the resistance to mutation as a function of launch size needs
to have a maximum in above one and - as can be seen from Fig. 2 - not too far
from 20.

Looking for this maximal value, we represent, in Fig. 3, the median of the
agents living after 50000 steps. This time, we zoom in the parameter space to
obtain a finer view of what is happening in the interesting area, that is, when the
launch size is around 20. In addition, this set of simulations has been obtained
by raising the carrying capacity of the system from 200 to 500, in answer to a
request presented in the MABS workshop presentation of this work. As resulting
from out tests, the modification of the carrying capacity is neutral with respect
to the claims of this paper. In Fig. 3, we show results from a run set of 24000



78 M. Paolucci and R. Conte

simulations, exploring a square of parameters where the mutation rate changes
from 3% to 4% and the launch size from 12 to 35.

From the figure, it is definitively how an area where the system as a whole is
more resistant to mutation can be identified for launch size in a range between
the values of 17 and 27. The shape of this maximum resistance area is also
underlined by the evidence of a sudden decrease in survival rates in the lower
launch size area (12-14). We can thus say that the second hypothesis is confirmed
also in its second part, and the ideal roost size is located in the area between 17
and 27 individuals. This result is fully in accordance with ethological data.

5 Conclusions and Discussion

The model presented is aimed to a simulation-based investigation of the roosting
effect among tree-roosting bats as a road to altruism. Food-sharing among vam-
pire bats (Desmodus Rotundus) is a well-known form of altruism, necessary for
the survival of this species, and supported by wide ethological evidence. Driven
by previous simulation data, in which roosting was found to significantly con-
tribute to the evolution of blood-sharing -a form of altruism vital for the species-
we simulated roost formation and maintenance in presence of mutation and for
variable roost size, exploring a large parameter space, to find out the borders
of the system resistance to mutation. Far from being aimed to find explanation
specific to the Desmodus Rotundus, we aim to contribute to the basis of the
general explanation for the evolution of altruism. Results show that the roost-
ing effect can cope with reasonably high levels of mutations. Moreover, they are
confirmed and reinforced by the correspondence between the calculated and the
observed ideal roost size. What is the added value of the present work? From
previous work, we know that the roosting effect eliminates groups initially con-
taining selfish vampires. In this study, we reinforce this assertion by saying that
this effect can cope with returning cheaters, as internally produced by mutation.
The confirmation we obtain about roost size increases our confidence in the value
of simulation as an explorative and explanatory tool.

This work is a first step in the direction of a defence of altruism based on
multilevel selection and at the same time compatible with a more dynamic social
organisation. On one side, we actually believe that altruism in intelligent agents
(including humans) should be also explained in terms of high-level cognitive
constructs. Intelligent altruism should be studied as such, and should not be
reduced to automated punishment or implicit reciprocation, as stated by game
theory, nor accounted for in terms of more or less fixed group structures. On
the other side, this line of research cannot do without a deeper understanding of
the simpler evolutionary pressures, of which we propose one aspect, which can
effectively shape the foundations of intelligent altruism.
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Abstract. Tax compliance is a field that crosses over several research
areas, from economics to machine learning, from sociology to artificial
intelligence and multi-agent systems. The core of the problem is that
the standing general theories cannot even explain why people comply as
much as they do, much less make predictions or support prescriptions for
the public entities. The compliance decision is a challenge posed to ratio-
nal choice theory, and one that defies the current choice mechanisms in
multi-agent systems. The key idea of this project is that by considering
rationally-heterogeneous agents immersed in a highly social environment
we can get hold of a better grasp of what is really involved in the indi-
vidual decisions. Moreover, we aim at understanding how those decisions
determine tendencies for the behaviour of the whole society, and how in
turn those tendencies influence individual behaviour. This paper presents
the results of some exploratory simulations carried out to uncover reg-
ularities, correlations and trends in the models that represent first and
then expand the standard theories on the field. We conclude that forces
like social imitation and local neighbourhood enforcement and reputa-
tion are far more important than individual perception of expected utility
maximising, in what respects compliance decisions.

1 Introduction

Tax evasion is a serious problem in most economies, especially those in tran-
sition to democracy. Evasion undermines the central government budgets and
expenditures, harming public welfare, and creates a sense of unfairness that can
ultimately generate further evasion.

Interestingly, the scientific field that addresses tax evasion is known as tax
compliance [2]. The decision to comply or evade is individual. When we con-
sider rational individuals, who pursue their self-interest, we expect that the
common behaviour would be to evade. However, in the real world, the num-
bers of compliance are quite high. Indeed, the literature of the field is mainly
centered around discovering the adequate models to explain why do people pay
their taxes [1,8,17,20]. Of course, central authorities would like to fully grasp
the mechanisms underlying tax compliance and evasion, in such a way that they
could ultimately promote evasion reduction [2].

Economists traditionally model individual tax evasion as if the individual is
just adding one more risky asset to her household’s portfolio [2]. Nevertheless,
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this theoretical approach fails to explain the behaviour that real societies display:
households comply far more than could be predicted in this theory. For instance,
in the USA, although fine value (or rate) can be neglected, and even though
less than 2% of households were audited, the Internal Revenue Service (IRS)
estimates that 91.7% of all income that should have been reported was in fact
reported (numbers from 1988-1992-1995, cited from [2]).

In multi-agent systems, most accounts of agents assume limited rationality,
that is, agents decide in such way to pursue their self-interest, based upon an idea
of utility, and maintaining some degree of autonomy [9]. The deepest insight to
approach the tax compliance issue by multi-agent based simulation comes from
Simon’s famous sentence “people have reasons for what they do” [18]. Each
person/agent has her own limited rationality, and the notion of rationality here
prescribed can be described as “multi-varied, situated, and individual” [4].

In this paper, we put together the methodologies behind multi-agent based
simulation with rationally-heterogeneous agents and tackle the tax compliance
problem. Our aim is to understand the mechanisms behind the compliance de-
cision, both at the individual and collective (social interactions) level. Agent
technology and exploratory simulation provide us with tools and methodologies
that allow for the rehearsal of mechanisms to try out different design scenar-
ios. Agent heterogeneity and individuality provide a more realist account of the
rational decisions that determine the overall behaviour of the society.

Next section presents the broad context of this research. In section 3, we pro-
pose a hierarchy of models to explore expansions and alternatives to the standard
theory. We describe how our models partially cover the design space, and propose
a strategy for its exploration. Section 4 presents Ec0, a model that represents the
standard theories, which we use to introduce the concepts and terminology used
on the field. In the following sections we introduce several enhancements to this
basic model: Ecτ

0 , Ec∗i
3 , and Ec∗4. We examine their respective constraints, and

report on experiments and simulations done over them. In section 9 we present
the environmental setting we used, and in section 10 we conclude and discuss
prospects for future work.

2 Context of Research

With the agent-view on computer intelligence, a lot of social issues gained rel-
evance and built a huge source of metaphors and inspirations for societies of
artificial agents. It was later that this collaboration between social scientists and
computer scientists started to be fruitful for both sides. Since at least the first
SimSoc workshop [12], most fields of social science began to endure the idea that
computer agent societies could provide a powerful tool to conduct experiments
in controlled environments in a principled way. Multi-agent based simulation
was developed as a field where the inherently complex issues could be subject
to controlled exploration, most of the times not to build or prove theories, but
rather to find the “right” hypotheses, conjectures, intuitions, with which to carry
on the scientific work [13,10]. The scientific questions to be answer are no longer
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only “what happened?” and “what may have happened?” but also “what are
the necessary conditions for a given result to be obtained?” In exploratory sim-
ulation, the descriptive character is not a simple reproduction of the real social
phenomena, and the prescriptive character cannot be simplistically resumed to
an optimisation. To put things simply, the subject of research expands from the
target phenomenon, and now includes its modelling, and not only real societies
can be studied, possible societies can be studied as well.

In some recent papers ([6,3]) we argued that for characterising existing so-
cieties with enough realism as to allow solid explanatory power, and enough
predictive power to permit policy recommendations, there exists the need for
heterogeneous and adaptive rationality. In the tax compliance scenario, we have
proposed some models of individual agents and of societies, and have been ex-
perimenting with them to gain insights into this complex issue, as well as set
the grounds for theories that can be used both to explain individual and social
behaviour, and to recommend central authority policies.

The classical problem of individual tax compliance, as well as the problem of
determining the correct tax enforcement policy, have constituted for decades a
challenge for economics, public finance, law enforcement, organisational design,
labour supply, and ethics [2], because it presents both theoretical and practical
problems that are hard to be dealt with. It is also an interesting problem for
MAS practitioners, since it presents a clear case where the limits of situated ra-
tionality are put to test, and the neo-classical economics approach of maximising
expected utility remains wanting in face of the empirical results available. Be-
cause of its inherently complex social character, tax compliance is also a great
issue to test out agent based simulation methodologies and techniques, and to
perform exploratory simulations that can help tackle the hot questions them-
selves, while gaining in experience and improving the necessary methodologies
for experimentation with self-motivated agents.

The idea of a society constituted by agents with heterogeneous rationalities
is central in the research we are conducting. This view opposes the traditional
endeavour of economics and particularly game theory, where all the agents follow
the same general law, and societies are homogeneous in rationality and therefore,
qualitatively, in trends for individual behaviour. This means that the sources
of complexity in global behaviour are limited to circumstances of the world,
and parametric features of the agent’s minds. Rather, with heterogeneous, self-
motivated agents, societies are orders of magnitude more complex, since in every
individual decision there is a potential for new, unpredictable behaviour. This is
our bid for truly taking on the open systems challenge, as was proposed by Carl
Hewitt in the 1970s [14,15].

Experimentation with such heterogeneous rational agents will foster different
lines of research:

-i- Cognitive modelling: mind design is being experimentally challenged, espe-
cially in what concerns decision and motivation;

-ii- Multi-agent based simulation: social simulations where the central unit is
the individual agent is a recent field, and with each new problem addressed,
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more is discovered about the potential of this methodological approach to
experimental social science. The issue of tax compliance is a rich research
field for this approach. Exploratory simulation together with agent hetero-
geneity and individuality, will provide reasonability, realism, and the possi-
bility to rehearse mechanisms and try out different scenarios;

-iii- Tax compliance modelling and policy: we can explore more accurate and
realist models of the individual decision by the tax payer, and its conse-
quences on the overall global society, particularly in what concerns policy
decisions;

-iv- Methodology for experimentation with self-motivated agents: the validity
of results obtained through simulation is always debatable, and it has been
argued that self-motivation only makes the case worse [4]. By conducting
simulations that span over a broad field of applications, analysing their
results, and proposing theory refinements and agents’ mind re-engineering,
we will gather information that can inform a full-fledged methodology for
experiments and simulations whose meaning can have an impact in the real
target phenomena. This is especially important when there is the need to
provide policy recommendations and expect their outcomes to be accurate.

3 The e*plore Methodology

The idea of using a collection of models to proceed with the exploration of
the tax compliance problem has been used to illustrate a methodology for such
problems. The base steps of this methodology come originally from Gilbert’s
lifecycle of simulation research [11]. The main ideas that go beyond those are
centred around back and forth journeys to provide robustness and ensure explo-
ration; progressive deepening of mechanisms in a broad but shallow design of
agents, societies and experiments; and face complexity through exploration of
model variability.

These are the steps of the e*plore methodology [5]:

i. identify the subject to be investigated, by stating specific items, features or
marks;

ii. unveil state-of-the-art across the several scientific areas involved to provide
context. The idea is to enlarge coverage before narrowing the focus, to fo-
cus prematurely on solutions may prevent the in-depth understanding of
problems;

iii. propose definition of the target phenomenon. Pay attention to its opera-
tionality;

iv. identify relevant aspects in the target phenomenon, in particular, list indi-
vidual and collective measures with which to characterise it;

v. if available, collect observations of the relevant features and measures;
vi. develop the appropriate models to simulate the phenomenon. Use the fea-

tures you uncovered and program adequate mechanisms for individual
agents, for interactions among agents, for probing and observing the simu-
lation. Be careful to base behaviours in reasons that can be supported on
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appropriate individual motivations. Develop visualisation and data record-
ing tools. Document every design option thoroughly. Run the simulations,
collect results, compute selected measures;

vii. return to step iii, and calibrate everything: your definition of the target,
of adequate measures, of all the models, verify your designs, validate your
models by using the selected measures. Watch individual trajectories of
selected agents, as well as collective behaviours;

viii. introduce variation in your models: in initial conditions and parameters, in
individual and collective mechanisms, in measures. Return to step v;

ix. After enough exploration of design space is performed, use your best models
to propose predictions. Confirm it with past data, or collect data and validate
predictions. Go back to the appropriate step to ensure rigour;

x. Make a generalisation effort and propose theories and/or policies. Apply to
the target phenomenon. Watch global and individual behaviours. Recali-
brate.

4 A Structure of Models to Explore the Tax Compliance
Problem

The classical approach to tax compliance, as well as the main concepts and
terminology of the field, are summarised in [2]. In [3], we have modelled the
traditional agent in the income tax setting, and the corresponding society model:
Ec0. The details of this model are described in the next section.

A number of unrealistic assumptions were on the basis of Ec0, and those
could explain its little predictive power and accuracy in face of real world data.
Significant changes were there proposed to the basic agent model of Ec0, re-
sulting in a series of models Ec1, Ec2, etc. Figure 1 depicts the structure of
these models, and helps to illustrate the kind of trajectory we are attempting in
our exploration of the space of possible designs. The idea behind this trajectory
is to successively remove overcome the shortcomings of Ec0, and use each new
experiment to get a deeper insight into the problem and eventually converge on
an appropriate model to face real data.

In the first models, the agent would resort to more complex reasoning to de-
liberate towards her compliance decision, by keeping track of past events, or

Ec0: standard theory

Ec1: individuality

Ec2: adaptivity

Ec3
*: sociality (perception) Ec3

*i: sociality (interaction)

Ec4
*: social heterogeneity

Ec0 :history

Fig. 1. Structure of designs for exploratory simulations in the tax compliance problem
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accessing her individual characteristics. However, the decision was kept individ-
ual, as no social perceptions or interactions were taken into account in decision
making.

In Ec1 the agent possesses some wealth, and consumes it at a certain rate
(γ). The agent’s wealth determines its propensity to comply or not to its tax
duties. Agents also have their own tendency towards evading, which we crudely
represented with a real number ε ∈ [0, 1]. The decision to comply takes these
individual features into account. Ec1 is the first model where the agent can be
said to have some kind of (limited) individuality.

In Ec2 we added some adaptivity. Ec2 agents possess some evolution capabil-
ities, namely, their tendency towards evading (or not) is dynamic, and evolves
towards non-compliance at a given rate (δ). Some times agents are caught evad-
ing, and this tendency to non-compliance is completely canceled for a period of
time we call memory, an individual agent parameter.

In Ec∗3 we introduced social perceptions as part of the data to be considered in
decision. Agents have a global perception about the level of evasion in the society,
and decide to comply or not according to their individual tolerance towards this
perception.

The picture of the models to be considered is now completed with new models
that encompass critical observations on the previous ones introduced in [3]. These
new models and respective results will be introduced in subsequent sections of
this paper, so here we only place them in the overall picture, as a way to deploy
our strategy of exploration. In the remainder of this paper we will be concerned
with tactical placement and setting of the models herein introduced.

So, in the next section we summarise the concepts, terminology and notations
we used for Ec0. Then we extend Ec0 with history, introducing Ecτ

0 . This model
slightly changes the standard theory to consider a criticism we produced in [3],
that when an agent is caught evading the central authority will investigate not
only the current year but also previous ones. We then present Ec∗i

3 , a model
where we explore the concept of imitation, and study how a core of stubborn
agents can influence a whole society towards the behaviour they adopt, and how
the distribution of two cores of stubborn agents with opposing behaviours can
produce global effects. Finally, we introduce Ec∗4, a model where two different
breeds of agents are used to model tax payers and tax enforcers. Geography and
locality become especially relevant in this latter model, as results are particularly
dependent on initial conditions and performance circumstances of the simulation.

5 Ec0: Modelling the Standard Theory

We now present model Ec0, the basis of our pyramid of increasingly complex
models. This model was introduced in [3] and we use it here to introduce the
important concepts, terminology and notations, as well as to have a reference
framework of ground results against which to compare our subsequent models.

The terminology used in [1] has become standard for the area. A taxpayer has
exogenous income y, facing a tax rate t. The amount reported to the government
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is x ≤ y, leaving z = y−x unreported, and paying tax tx. The tax authority does
not know the true income y, and has to enforce compliance through a policy of
audits and penalties. The model goes on to assume that the enforcement policy is
known to the taxpayer and depends on a probability p, with 0 < p < 1. Further
assumptions are that p does not depend on x, and that the tax authority is
always able to discover the true value of y. Then, if θ is the penalty to be paid
for every unit of income evaded, the cheating taxpayer will additionally have to
pay θz + tz. Given this, and assuming the taxpayer is risk averse, and that u(·)
is the utility of money, it can be shown that her expected utility if she decides
to evade is [2,20]:

(1 − p)u[y(1 − t) + tz] + pu[y(1 − t) − θz)] (1)

For experimentation with Ec0, we used a slightly simplified version of this
formulae, concentrating only on what the agent saves by not complying. So, the
evading decision is taken by each agent if the following inequality holds:

(1 − p)u(tz) + pu(−θz) > 0 (2)

The results produced by experimentation with Ec0 are pretty much what
could be expected from direct analysis of the decisions involved. Only in extreme
and unrealistic conditions will the agents choose to comply. Observing that z (≥
0) does not influence inequality 2, we conclude that tax payers evade when the
following (all equivalent) inequations are satisfied:

p <
t

t + θ
θ <

1 − p

p
t t >

p

1 − p
θ (3)

Note that the decision is independent of the income value (y). Table 1 shows
the turning point of individual decisions for usual values of the parameters. For
instance, in the first section of the table we observe that for a tax of 30% and
a fine of 50%, we need to inspect more than 38% of the tax payers to ensure
compliance.

Table 1. Ec0: Evasion point for usual values of θ, t, and p. Each cell contains, for each
of the inequations 3, the point in which the truth value changes.

θ \ t 0.10 0.20 0.30 0.40

0.25 0.29 0.44 0.55 0.62
0.50 0.17 0.29 0.38 0.44

p \ t 0.10 0.20 0.30 0.40

0.01 9.90 19.80 29.70 39.60
0.05 1.90 3.80 5.70 7.60
0.10 0.90 1.80 2.70 3.60

θ \ p 0.01 0.05 0.10

0.25 0.0025 0.0132 0.0278
0.50 0.0051 0.0263 0.0556
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As expected, the numbers that promote compliance are quite stressful. For
instance, for a tax rate of 40% and with a fine of 50%, the central authority
would have to inspect over 44% of the tax returns to ensure overall compliance.
Or, for an average tax rate of 30% and a probability of inspection of 1%, the
fine would have to be above 2970% over the evaded amount. Or still, for a fine
rate of 50% and a probability of inspection of 1%, the tax rate would have to
be less than 0.51% to encourage compliance. None of these values is the least
reasonable in face of what happens in real life. It remains to be captured by the
model what leads people to comply.

6 Extending Ec0 with History

One criticism that was quite prominent in [3] was that it would be rather awk-
ward for the central authority to discover an evader agent and not investigate
previous years. In fact, the common practice is that once a tax payer is inspected
once, not only she will be investigated for her past, but also she will continue to
be investigated in the future, even if she did not evade at all (although we are
not considering the future in the model).

Model Ecτ
0 incorporate the previous history of the agent in her own utility

calculations. Instead of considering θz, the amount of penalty will be θ(zτ +
zτ−1+zτ−2+. . .+zτ−n), where τ is the current year. In most European countries,
tax reports can be scrutinised reaching 10 years back, so we picked n = 9.

If, on top of this, interests are charged on past due taxes and/or fines, the
compliance equation above significantly changes, and could indeed produce the
tax compliance behaviour we observe on most Western countries. To simplify,
we show only calculations for the simplified compliance rule:

(1 − p)u(tzτ ) + pu[−θ
n∑

i=0

(zτ−i) −
n∑

i=0

((1 + r)itzτ−i)] > 0 (4)

where r is the going interest rate for delayed payments. Note that the decision
is taken in year τ , but only the 10-year aggravated penalties need be included
in the decision, as the gains were already taken into account in the previous
year’s decisions. The decision to evade was already taken, there is nothing to
be gained in year τ about that money, only to be risked. There are also some
more simplifying assumptions, for instance, the interest rate is fixed over the
years, as well as the fine rate, the tax rate and the probability of inspection. In
a stable economic setting these options do not distort in any way the results of
simulation, but in unstable settings, refinements must be made for the sake of
realism.

In table 2 we can see the point in which the decision of whether to comply
or not changes, for fixed usual values of the parameters. In the top part of the
table, we fix some values for the tax and fine rates, and point out the smallest
value for the probability of inspection that ensures full overall compliance. We
note that there is a substantial decrease in the percentage of tax returns to be
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Table 2. Ecτ
0 : Point in which the decision to comply changes for usual values of θ, t,

and p

θ \ t 0.10 0.20 0.30 0.40

0.25 0.23 0.31 0.36 0.39
0.50 0.15 0.25 0.28 0.31

p \ t 0.10 0.20 0.30 0.40

0.01 9.81 19.61 29.41 39.21
0.05 1.81 3.61 5.41 7.21
0.10 0.81 1.61 2.41 3.21

audited. For instance, for an average tax rate of 30% and a fine of 25%, we pass
from 55% (in table 1) to 36% tax returns to be audited in order to ensure full
compliance.

In the bottom part of table 2, we fix usual values for the tax rate and the
probability of inspection, and we observe the smallest value of the fine rate that
ensures full overall compliance. Here, the decrease in the fine rate is proportion-
ally very small. It is obvious that any individual taxpayer is indifferent between
a fine rate of 570% and another of 540% when deciding about compliance.

We conclude that these modifications alone do not have a very significant
impact in the behaviour of tax payers, much less the overall behaviour of the
society. For any reasonable values of p, t and θ, percentages of complying agents
are quite small and far from reality.

Table 3. Evolving the percentage of evaders by changing θ, p, and n simultaneously

n = 10 n = 15

p = 0.01 p = 0.02 p = 0.01

θ = 0.5 85%
θ = 2 24%
θ = 4 73% 5% 6%

However, when experimenting with increasing the probability of inspection p
by very small amounts, we noticed that everything else being equal, the impact
on the number of compliers of passing from p = 0.01 to p = 0.02 was far more
significant than if we passed from, say, p = 0.1 to 0.2. So, we tried to manipulate
more than one variable at the same time. In table 3 we have results that show
some promise. By passing from p = 0.01 ∧ θ = 0.5 to p = 0.02 ∧ θ = 2, the
number of evaders decreases from 85% to only 24%. More impressively, a very
high fine rate of θ = 4 will only conduct to 27% of compliers when p = 0.01, but
for p = 0.02 it will yield 95% of compliers. And even for the smallest p = 0.01 (we
cannot forget that it is expensive to conduct audits, far more than to increase
fines), we can achieve 94% of compliance by examining tax returns back 15 years,
instead of 10. The problem here would be that a simple strategy of ‘killing’
companies and founding new ones with the same assets could have the effect of
‘cleaning up’ the dirty past and getting on.
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In any case, there remains an important gap to be covered by our models. We
should note nonetheless that for any agent decision model M we can produce
the corresponding history-aware model M τ and enhance our coverage. However,
the promise of Ecτ

0 is that perhaps there are still individual decision mechanisms
to be explored in the classical theory and that the social front is not the only
one to be considered. We will surely conduct further investigations along these
ideas.

7 Stubbornness and Imitation

There is a considerable amount of literature about formation of consensus among
homogeneous and heterogeneous agents. In multi-agent systems, the issue has
been studied by Kaplan [16], and later by Urbano [19]. Urbano showed that
a mechanism of imitation together with a small percentage of stubborn agents
(agents that would not change opinion whatever happened) could be enough
to promote a global societal change. In this section we propose to adopt this
mechanism to model Ec∗3 [3]. The resulting model is called Ec∗i

3 . In Ec∗i
3 our

population is divided into three subgroups: the stubborn compliers (SC), the
stubborn evaders (SE), and the imitators (I).

Agents travel randomly in a square grid, and meet with other agents. For
the decision, the agent will follow Ec2 rules, which consider the ethical attitude
ε ∈ [0, 1], such that whenever ε = 1 the agent always complies and where ε = 0
the agent always evades. So, the agent will pay her taxes if ε ≥ 1

1+θ
ω
W

, where
ω is the wealth of the agent, and W is the average of wealth of all agents. If the
agent evades and is caught, her ε will be updated to 1. In the opposite case, her
ethical attitude decays by a quantity δ (regulating the memory of having been
caught evading). The idea of using factor ω

W
amounts to consider that agents

whose wealth is above the average will more easily risk larger amounts of money
than poorer agents. Agent’s income is consumed at a rate γ, the remaining
amount is added to her personal wealth.

Along the spirit of Urbano’s investigation, we propose very simple and imme-
diate mechanisms for imitation. The agent’s individual attitude is publicly known
(we will remove this constraint later on, and investigate on how the agent’s be-
haviour can be affected by the reputation it renders), and agents imitate others
following one of these rules:

:i: The agent looks at the other agents in the same square, and adopts as her
new ethical attitude (ε) the average of their ethical attitudes.

:ii: The agent looks at the other agents in the same square, and adopts the
ethical attitude of the more committed agent (the one that potentially has
the highest influence on others), that is, of the agent that has her ε closest
to one of the extremes of interval [0, 1].

:iii: The agent keeps track of the previous n encounters, and takes on the average
of the involved agents’ attitudes;

:iv: The agent only considers the other agents’ ε if they have a higher energy
(for simplicity’s sake, say wealth).
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Using rule i, we conducted simulations with typical values: θ = 50%, p = 1%,
and t = 30%. Our aim was to find out the combination of reasonable features
that could ensure some stable equilibrium with an acceptable amount of overall
compliance.

After some preliminary runs, it was clear that in such a highly social setting,
the model was very responsive to variations in population density. So, in table 4
we present, for imitation rule i, the amount of evasion found in the equilibrium
state (about 2000 iterations of the simulation), considering no stubborn evaders,
and different proportions of stubborn compliers. In the line labelled “% ev. sc”
we have the outcomes for a scarcely crowded society, where the average imitation
rate per iteration is around 3.8%. Line “% ev. mc” displays the same numbers
for a medium crowded society, where the average imitation rate is 9.7%. Line
“%ev. hc” represents a highly crowded society, and the average imitation rate is
23.7%.

Table 4. Ec∗i
3 Rule i: Variation of evasion over different proportions of Stubborn

Compliers for different population densities

Rule i t = 0.3 θ = 0.5 p = 0.01 δ = 0.01 γ = 0.99 SE = 0%

SC 0 10 20 30 40 50 60 70

% ev. sc 74 63 52 45 34 29 22 16
% ev. mc 78 65 48 37 28 25 16 11
% ev. hc 86 60 35 20 15 11 4 2

Figure 2 depicts the results of these series of experiments. It is clear that if
all the society is composed of only imitators (no stubborns), the main trend
is to evade, and agents imitate each other, hence reinforcing that trend. The
introduction of a small proportion of stubborn compliers (say 20%) produces
substantial effects in compliance for any density of population. In general, when
we increase the relative number of stubborn compliers, the corresponding in-
crease in compliance is always greater by a significant amount. This effect is
particularly dramatic in highly crowded societies.

We conducted more experiments with the different imitation rules (ii, iii, and
iv), but the results were not as exciting. An important parameter in the experi-
ments is δ, the degradation of the memory of being caught evading. We remade
the above experiments with δ = 0.10 and the outcome was far worse. Agents
seem to forget too soon that they were caught and start evading again. The con-
sumption rate γ is quite high, about 99%. This means that agents do not save
enough to be prepared to face a high penalty, and are better off complying. As
happened in the previous series of experiments, increasing either the inspection
(p) or the fine (θ) rates greatly reduces evasion. For instance, with p = 10% and
θ = 100%, a stubborn compliers proportion of 20% yields an overall evasion rate
below 5%.

From table 1 we can observe that for a fine of 50% and a tax rate of 30%,
the minimum inspection rate to ensure total compliance is 38%. Here, with an
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Fig. 2. Evolution of evasion when the fixed percentage of stubborn compliers varies.
The square-dotted line represents a highly crowded society. The dotted line represents
a medium crowded society. The diamond-dotted line represents a sparse society.

inspection rate of 1%, we can assure 65% of compliance with 20% of stubborn
compliers, or even 89% of compliance with 50% of stubborn compliers.

This phenomenon we observed can explain why more people comply than
standard theories predict. Stubbornness can be explained by personal character-
istics, education, ethical stance, moral imperatives, social motivations, or even
by some other mechanisms to be explored, such as reputation, imitation itself,
altruism, fear, shame, political beliefs, etc.

The policy implications of these conclusions are substantial. If the stubborn
compliance is appropriately encouraged (e.g. by offering prizes, such as tax re-
ductions) and spread out, it will have a multiplying effect on overall compliance.
In this case, it could pay off to bet on investing great efforts in building up a core
of stubborn compliers, instead of dividing those efforts undiscriminantly over the
whole population. The idea would be to induce or favour stubborn behaviour
rather than recognise and enhance it, as it would be very difficult to distinguish
a stubborn behaviour from an imitator with a very high threshold1.

8 I Fought the Law and the Law Won

We now introduce an expansion of our previous models into Ec∗4. In this model,
we introduce a new breed of agents, the tax enforcers, or inspectors. An agent
is only audited if she meets with one of these tax inspectors, and the inspector
decides to audit her. This decision is taken autonomously, and so the whole
concept of p ceases to be a number to be adopted blind by some anonymous
central authority, and becomes an overall subjective goal of that authority, one
that depends on individual decisions of the inspectors.

1 We are thankful to an anonymous reviewer for pointing this out to us.
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Geographical location (representing, more generally, complex social distances)
becomes also an important issue, as well as trajectories that both tax payers and
inspectors will go through. We keep trajectories random, using an uniform dis-
tribution to select among the eight candidates for each individual step. Later on,
we will investigate mechanisms such as imitation of neighbours, clustering and
flocking, to examine how these will influence the patterns of overall behaviour.

For tax-paying behaviour, we use the decision model of Ec2. As to tax in-
spectors, their decision to inspect an agent is based on the following criteria.
Central authority has a limited budget for auditing and inspectors, taken out
of the whole amount of collected taxes. Each inspector receives a fixed amount
of money per period, cf , and each audit costs ca. Inspectors are then assigned
a personal budget b by the central authority. For now, these are obtained by
dividing equally the overall budget B of the central authority by the number of
inspectors.

When deliberating about whether or not to inspect an agent i, the inspector
considers how much money he has got left from his budget, how much the audit
will cost, and how much due tax and fine the audited taxpayer is expected to
provide. These calculations are based on individual experience (frequency of
successes in previous audits) and on the wealth of the inspected agent. If the
information is available about previous evasions, the inspector can take that into
account. For this purpose, inspectors exchange information among them about
previous caught evaders. This exchange happens only when inspectors meet with
other inspectors in their trajectories. Machine learning techniques can also be
used to improve inspectors’ performance.

With this inspection policy, we eliminate further criticisms of Ec0 [3]: that
audits are determined by a probability; that the probability of an agent being
audited is independent of the past; that the probability of an agent being audited
is independent of the probabilities of other agents being audited; that the cost of
an audit is irrelevant and there is no limit for the number of audits to be carried
out.

Experiments with Ec∗4 are reported in [7]. Our findings show that the overall
compliance behaviour can be quite high in this new setting, given the appropriate
fine tuning. Moreover, the distribution of the prerogative to audit tax payers from
the central authority to autonomous inspectors can help meet the conditions for
compliance in other models. However, individual decision mechanisms should still
be enhanced, possibly through the use of context dependent adaptive functions.
On top of that, the complexity and multiplicity of social distances must be taken
into account in the simulation.

9 Experimental Environment

The experiments here reported have been programmed in NetLogo 3.0, of
the Center for Connected Learning and Computer-based Modelling of the
Northwestern University (Illinois). Figure 3 is a screen shot of our application
running an experiment with Ec∗i

3 .
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The typical simulation would have a square world with 100×100 slots, where
500 agents would evolve. Then it would run until some equilibrium was found,
which would happen at most around iteration 200 for the first experiments and
around iteration 2000 for the simulations of section 6.

Fig. 3. A snapshot of application Ec∗ running model Ec∗i
3

Development under the NetLogo 3.0 environment was gentle and swift, and
the collection of data was straightforward. The results we present in the paper are
mostly taken from typical runs, although sometimes we run several experiments
and averaged the result. The exploration of the model parameters to obtain
some desired outcome was conducted mainly by setting usual values for some
parameters while thoroughly spanning over the remaining ones. In order to find
which are the key parameters, as future work we intend to conduct a sensitivity
analysis.

10 Conclusions

Tax compliance is a challenge posed to each individual in a society, and one
that defies the standing proposals for explaining rational behaviour, as well as
(re)produce it in artificial agent experimental settings. When the issue is looked
upon from a social standpoint, experimental complexity grows steeply and com-
prehension of the observed phenomena becomes harder and even more defying.

We take on this challenge from the multi-agent based simulation standpoint.
Our proposal is to consider situated, multi-dimensional, adaptive and individual
decision models as a means to provide a richer representation of the actors in
a simulation. In this paper, we report some exploratory simulations that have
allowed us to have a deeper insight of the mechanisms involved in both the
individual decision and the dynamics of societal behaviour.
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We propose models that promote the explanation of compliance mechanisms
to a level that the classical theories could not achieve. This is the first step
towards a robust approach to tax compliance, able to predict real outcomes, and
eventually to propose policy recommendations, for central authorities. This is
particularly important in countries where public deficits and tax evasion are very
high. Among these models, we introduced historical inspections and imitation
behaviours, and obtained particularly good results. Stubbornness and leadership
can nurture a stable equilibrium with good overall compliance levels, provided
the appropriate constraints are assured.

Future work will focus on the completion of the series of experiments, as well
as calibrating some new models and mechanisms. An important step towards
this calibration will be to conduct a thorough sensitivity analysis on the models
we already have run in our simulations: it is important to explore the parameter
space and investigate whether we can be located in special niches or particular
locations in that space. In particular, we will investigate how our models are
influenced by the particular distribution of income we use to model our agents.

We also want to obtain real empirical data to help this fine tuning task, as
well as validate our present results and design options. We also plan to compare
our tax simulations with other compliance behaviours, such as public transit.
Another idea is to stretch out the kind of choice functions we use, and con-
sider prospect theory, infinite penalties, moral imperatives, and other individual
sources of decision. Mechanisms for spreading of reputation and social stigma
will also be investigated.
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Abstract. In this paper, a variant of Kiyotaki and Wright’s model of
emergence of money is investigated. In the model, each good has different
durability rather than storage cost as in Kiyotaki and Wright’s model.
Two goods are infinitely durable but one is not durable. With certain
conditions, non-durable good can be money as a medium of exchange.
But equilibrium condition may be sensitive to the time evolution of the
distribution of goods that each agent holds in its inventory. We test, with
several learning models using different level of information, whether or
not the steady state in this economy can be attainable if the distribution
of goods is far from the steady state distribution. Belief learning with full
information outperforms the other models. The steady state equilibrium
is never attained by belief learning with partial information. A few agents
learn to use non-durable good as money by reinforcement learning which
does not use information about distribution of goods. It is surprising
that providing partial information is rather detrimental for attaining
emergence of a non-durable good money.

1 Introduction

In this paper, Cuadras-Morató [6]’s model of perishable money as a medium of
exchange, a variant of Kiyotaki and Wright [13]’s model of emergence of money,
is investigated. In the model, each good has different durability while each good
has different storage cost in Kiyotaki and Wright [13]’s model. In our setting,
two goods are infinitely durable but one is perishable.

With certain condition, a perishable good can be money as a medium of ex-
change in the stationary equilibrium. In the mathematical analysis, the station-
ary equilibrium has been derived by assuming that the economy has been near
the stationary equilibrium. To the best of our knowledge, there is no discussion
about the process of how the economy converges to the stationary equilibrium
if the economy is initially far from the steady state. As the equilibrium condi-
tion may be sensitive to the time evolution of the distribution of goods in the
economy, it is necessary to check whether the economy which is far away from
the stationary equilibrium can converge to the equilibrium.

We test whether stationary equilibrium is attainable by artificial agents which
follow several learning models in the economy where a perishable good can be
money. Especially we would like to compare belief learning model a la fictitious
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play1 with reinforcement learning model2. In the belief learning, agent utilizes
the information of current state of the distribution of goods explicitly. On the
other hand, in the reinforcement learning, agent pays attention to its own ex-
perience only and never looks at what the other agents do. In other words,
agent never utilizes the information about the distribution of goods in the re-
inforcement learning. So belief learning and reinforcement learning represent
two extreme cases of how information of the other agents’ behaviors is treated
in the learning process 3. By comparing these models, we would like to see
which degree of information is necessary to attain the stationary equilibrium
in Cuadras-Morató [6]’s model when the economy is far from the steady state
equilibrium.

For attaining a steady state in the economy with perishable money, our sim-
ulation result shows that belief learning with full information of the distribu-
tion of goods outperforms reinforcement learning. In the reinforcement learning,
agent learns not to use a perishable good as a medium of exchange immediately.
Moreover, interestingly, it is theoretically shown that belief learning with partial
information of the distribution of goods never learns to use a perishable good
as a medium of exchange. In the belief learning with partial information, each
agent is provided only aggregate information of the distribution of goods in the
economy. So this means that providing partial information is rather detrimental
for attaining a steady state equilibrium in the economy with perishable money.

The organization of the paper is as follows. In the next section, the structure of
Cuadras-Morató [6]’s model and its equilibrium prediction are explained. In the
section 3, the simulation design and models of belief and reinforcement learning
are shown, and then simulation results are summarized in section 4. Conclusions
are given in the final section.

2 Model

Jevons [12] gives a list of requirements that any object should have in order to
be suitable to perform the functions of money. Among others, portability, homo-
geneity, divisibility, stability of value, cognizability, and durability are regarded
by him as desirable qualities of any commodity performing the role of money.
Before Jevons wrote his book, Karl Marx [15] gave a similar list of desirable
properties of money for hoarding. The passage of Peter Martyr’s book cited in
his work is of particular interest for us.

The high specific value of precious metals, their durability, relative
indestructibility, the fact that they do not oxidize when exposed to the air
and that gold in particular is insoluble in acids other than aqua regia. All

1 For a general reference to belief learning, see Fudenberg and Levine [11].
2 For reinforcement learning, see Sutton and Barto [19] and Young [20].
3 Some experimental economists compare belief learning with reinforcement learning

in game theoretic settings. See Camerer and Ho [4], Cheung and Friedman [5], and
Feltvich [10].
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these physical properties make precious metals the natural material for
hoarding. Peter Martyr, who was apparently a great lover of chocolate,
remarks, therefore, of the sacks of cocoa which in Mexico served as a
sort of money.

“Blessed money which furnishes mankind with a sweet and nutritious
beverage and protects its innocent possessors from the infernal disease
of avarice, since it cannot be long hoarded, nor hidden underground!”
(De orbe novo [Alcala, 1530, dec. 5, cap. 4].24)

Hence, a perishable good such as a cocoa was used as money in Mexico in
those days. But Marx didn’t ask the question of why a perishable good such as a
cocoa could be money even when it was lacking one of the desirable properties,
durability, that money should have. When we look back in the history of money,
there have been a number of cases reported by anthropologists and historians in
which perishable goods appear to be used as mediums of exchange. For example,
eggs in Guatemala, butter in Norway, tobacco, rice, grain, beef, peas and so on
in the USA (see, for example, Einzig [9]). To explore the economic foundation
of emergence of money as a perishable medium of exchange might be interesting
for study of the historical evolution of money.

In Cuadras-Morató [6]’s model, there are infinitely many agents of three types
who lives infinitely long periods. Type i agent enjoys utility, U , when it obtains a
good i and consumes it, then it produces a good i+1 (modulo 3) with production
cost, D, in the next period. Each agent can have at most one good at a time.
While good 1 and 2 are infinitely durable, good 3 is perishable and loses its value
within two periods after it is produced. We call a good 3 at the first period as
30, and a good 3 at the second period as 31. It is assumed in the theory that
each agent also commonly knows the distribution of goods that each agent holds
at each period. They meet at random at the market and then decide whether
they would like to exchange their goods. If they mutually agree to exchange
their goods, transactions between agents take place. If the trading partner holds
same good, transaction never takes place. If agent of type i obtains a good i in
its transaction, it will produce a new good i + 1 (modulo 3) at the beginning of
the next period. If agent of type i did not obtain a good i in its transaction, it
continues to keeps the good that it has already held asa far as it is a durable
good. If agent holds a good 31 and fails to obtain a good i , it has to dispose
the good 31, then must produce a new good i+1 (modulo 3) in the next period.
Each agent i tries to maximize its expected lifetime utility with the discount
factor β(0 < β < 1). Here, denote Vij as the agent i’s expected lifetime utility
when it participate in the market with a good j.

Fig. 1 shows a trading process in which type 1 agent exchanges a good 2 with
a good 30 that type 2 agent holds, then type 1 agent exchanges his good 31 with
a good 1 that type 3 agent holds. Thus, if a good 3 can circulate successfully
among these agents during two periods, every agent can obtain goods that they
desire for their consumption. In this way, a good 3 can be money as a medium of
exchange. In this trading process, it is trivial that type 1 agent and type 3 agent
offer to trade because both of them have goods that their trading partners desire
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Fig. 1. Good 3 can be a medium of exchange

to consume. But a trade between type 1 and 2 agents is not trivial because type
1 agent does not desire a good 30 for its consumption.

But if V131 > V12 holds, it is desirable for type 1 agent to exchange its good 2
with 30 because it may earn higher expected utility with a good 31 in the next
period than it keeps a good 2 in its storage. So, it is optimal for type 1 agent to
exchange its good 2 with good 30. V12 and V131 are given by Bellman equation
respectively as follows.

V131 =
β

3
[−D1 + V12 + p21(−D1 + V12) + p230(−D1 + V12)

+p231(−D1 + V 12) + p31(U1 − D1 + V12) + p32V12]

V12 =
β

3
[V12 + p21(U1 − D1 + V12) + p230V131 + p231V12

+p31V12 + p32V12]

Thus, if the following equation (1) is positive, type 1 agent would like to trade
its good 2 for a good 31.

V131 − V12 =
(p31 − p21)(U − D) − 2D

1 + β
3 p230

(1)

where pij is the fraction of type i agent who holds a good j in the economy4.
For type 2 agent, by calculating its expected lifetime utilities with the discount

factor, the following equation holds,
4 The detail of deriving the expected life time utility is partially given in Cuadras-

Morató [6]. The full analysis is provided upon request. In addition, I will show
an example for deriving the expected life time utility in an another setting in the
section 3.3.
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Fig. 2. Good 1 can be a medium of exchange

V21 − V231 =
β

3
[p12U + (1 + p131)(V21 + D − V230)] (2)

It is always positive whenever p32 = 05.
Finally, for type 3 agent,

V31 − V32 =
β

3
[V31 − V32 + p12(V31 − V32)] (3)

From this, we obtain V31−V32 = 06. Thus, as type 3 agent starts its transaction
with a type 1 good, it is indifferent between type 1 and 2 goods, we assume that
it never hold a type 2 good. Thus, p32 = 0.

From these results, we can see that trading strategy for type 2 and 3 agent
is not affected by the time evolution of the distribution of goods. Steady state
distribution of the goods implied by these agents’ behaviors is p∗ = (p12, p230 ,
p21, p31) = (0.8967, 0.3456, 0.5272, 1.0)7. Vice-versa, If the distribution of goods
is p∗, it is best response for type 1 agent to trade a good 2 for a good 31 if and
only if U

D > 5.23018. If this condition is satisfied, even if a good 3 is perishable, it
can be money as a medium of exchange in this economy. This is an equilibrium
prediction of this model.

In the same way, we can calculate the conditions that a good 1 can be money.
The necessary and sufficient condition for that a good 1 can be money is V21 >
V231 as shown in Fig. 2. In fact, as we have already shown, the condition V21 >

5 As explained below, we assume that p32 = 0 always hold.
6 If V31 − V32 �= 0, it must be β

3 + β
3 p21 − 1 = 0 . This implies 3 = β(1 + p12) < 2, a

contradiction.
7 The detail of deriving the steady state is partially given in the appendix of Cuadras-

Morató [6]. The full analysis is provided in the appendix A in this paper.
8 Substituting for p∗ and rearranging, V131 −V12 > 0 holds if and only if U/D > 5.2301.
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Table 1. Optimal trading strategy for type 1 agent

Good held by trading partner

Good held by type 1 good 1 good 2 good 30 good 31

good 2 1 0 1 0

good 30 1 0 0 0

good 31 1 1 1 0

Table 2. Optimal trading strategy for type 2 agent

Good held by trading partner

Good held by type 2 good 1 good 2 good 30 good 31

good 1 0 1 1 0

good 30 1 1 0 0

good 31 1 1 1 0

V231 always holds regardless of the values of U and D and the distribution of
goods. So, good 1 can always be money as a medium of exchange in this economy.
On the other hand, the necessary and sufficient condition for that a good 2 can
be money is V32 > V31, while the condition V32 > V31 never hold for any values
of U and D. Thus, good 2 is never money as a medium of exchange.

Thus, in summary, depending on the values of U and D for type 1 agent, there
are two equilibria in this economy.

(Equilibrium A) Both good 1 and 3 can be money.
(Equilibrium B) Only good 1 can be money.

If the condition for Equilibrium A is satisfied, type 1 agent’s trading strategy
can be summarized in the Table 1. In each cell of the table 1, 1 means that
type 1 agent would like to trade and 0 means that it would not, depending
on the good that the trading partner holds. Apparently, it is impossible that
type 1 agent participates in the transaction with a good 1 because it certainly
consumes it. So, that case is omitted. If the trading partner holds a good 1, type
1 agent offer to trade regardless of the good it holds, so every cell in the first
column should be 1. If the trading partner holds a good 31, type 1 agent never
offer to trade whatever good it holds, so every cell in the fourth column should
be 0. If type 1 agent holds a good 31, it would like to offer to trade whatever
good its trading partner holds, so every cell in the fourth row should be 1. By
the assumption, if the trading partner holds same good, transaction never take
place, so every cell in the diagonal should be 0. Finally, type 1 agent would like
to exchange its good 2 with a good 30, not vice-versa. This is an optimal trading
strategy under complete information for type 1 agent. Similarly, optimal trading
strategies under complete information for type 2 and 3 agents are given in Table
2 and 3 respectively.
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Table 3. Optimal trading strategy for type 3 agent

Good held by trading partner

Good held by type 3 good 1 good 2 good 30 good 31

good 1 0 0 1 1

3 Simulation Design

We compare the following four behavioral models in our simulation.

3.1 Model 1. Theoretical Model

All the agents follow the optimal trading strategy under complete information
derived from theoretical prediction as shown in Table 1, 2, and 3. This model is
used as a baseline for comparing performances of the other learning models. But,
unlike in the theoretical model mentioned in section 2, as the economy in this
simulation starts with the initial condition far from the steady state equilibrium,
it is still uncertain whether the steady state is attainable even though agents
follow this model. So one need to check it by a simulation and we did it.

3.2 Model 2. Belief Learning with Full Information

Belief learning has a long history in theory of games. Brown [2] proposed it as
a numerical algorithm for finding a minimax solution in a two-person zerosum
game and Robinson [16] proved that the algorithm proposed by Brown, called
fictitious play learning, always converges to a minimax solution in a two-person
zero-sum game. On the other hand, if that learning algorithm is applied to a non-
zerosum game, such convergence result does not always hold. In fact, Shapley [18]
shows a counter example of a non-zerosum game that fictitious play learning does
not converge to an equilibrium but circulates among some non-equilibrium out-
comes. Recently, a number of researchers in experimental economics use fictitious
play learning to replicate subjects’ behaviors in laboratory experiments. They
showed that fictitious play learning outperforms reinforcement learning in some
cases (see Camerer and Ho [4], Cheung and Friedman [5], and Feltvich [10].).

In belief learning such as fictitious play learning, agent forms a belief of the
other agents’ behaviors from the past experiences. Given that belief, agent tries
to maximize its expected payoff. Basically that belief is derived from frequency
of the strategy choices by the other players in the previous periods.

Next we consider how to apply fictitious play learning in our modeling. First
of all, note that the frequency of the strategy choices by the other players
are represented in the distribution of goods in the previous period, pt−1 =
(pt−1

12 , pt−1
230

, pt−1
21 , pt−1

31 ). So type 1 agent who follows belief learning tries to max-
imize its life time expected payoff given pt−1. Thus each type 1 agent calcu-
lates V131(p

t−1) − V12(pt−1) at the beginning of period t and trades its type



Learning to Use a Perishable Good as Money 103

2 good for a type 3 good in the period t if V131 (pt−1) − V12(pt−1) > 0. From
equation (1),

V131 (p
t−1) − V12(pt−1) > 0 ⇔ (pt−1

31 − pt−1
21 )(U − D) − 2D > 0 (4)

Thus, if U > D and pt−1
31 = 1, this condition implies9,

pt−1
21 <

U − 3D

U − D
= f(U, D) (5)

This condition is depicted in Fig. 3. The gray area is the parameter space in
which type 1 agent would like to trade its type 2 good for a type 3 good.

Fig. 3. Parameter space for type 1 agent

As each type 1 agent knows every agents’ transaction in the past in this case,
we call this type of belief learning ’belief learning with full information’.

Note that even if the equilibrium condition of Equilibrium A, U
D > 5.2301,

is satisfied, that equilibrium might not be attainable. Now suppose that the
economy is far from the steady state, for example, somewhere in the gray area
in Fig.3. As type 1 agent trades its type 2 good for a type 3 good in the gray
area, the proportion of type 2 agent who holds type 1 good, p21, moves up
toward the steady state of Equilibrium A. But when the state of economy just
goes across the borderline of f(U, D), type 1 agent doesn’t accept a type 3 good,
however. Even if the equilibrium condition U

D > 5.2301 is hold, this can be the
case because the condition (5) is violated. In other words, even if U

D > 5.2301 is
hold, as pt−1

21 is higher than f(U, D), agent who follows belief learning with full

9 Thus, from (1−pt−1
21 )(U −D)−2D > 0, we have (1−pt−1

21 ) > 2D
U−D

. Then 1− 2D
U−D

>

pt−1
21 . Finally, we have U−3D

U−D
> pt−1

21 .
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information would not like to trade a type 2 good for a type 3 good. Then before
reaching the steady state of the economy, p21 goes down toward the gray area.
Again, as the state of economy is in the gray area, type 1 agent accept a type 3
good and then p21 goes up. Thus eventually the economy circulates around the
borderline of f(U, D) and does not converge to the steady state. This is a similar
phenomena of a counter example shown by Shapley [18] in a simple matrix game.

So, we would like to know whether equilibrium A can be attained with belief
learning if we start the economy with the initial condition that the distribution
of goods is far from the steady state.

As type 2 and 3 agents’ optimal trading strategies are not affected by time
evolution of the distribution of goods, we assume in our simulation that these
types always follows optimal strategies in Table 2 and 3.

3.3 Model 3. Belief Learning with Partial Information

Type 2 and 3 agents follow the trading strategy derived from theoretical predic-
tion as in Model 2. We assume that type 1 agent knows the aggregate information
of the distribution of goods only, i.e., they don’t know which type of agent holds
which type of good but only the number of each good in the market. Thus
type 1 agent only know the information of (pt

1, p
t
2, p

t
3), where pt

1 =
∑3

i=1 pt
i1,

pt
2 =

∑3
i=1 pt

i2, and pt
3 =

∑3
i=1 pt

i3. So we call belief learning based on this type
of information ’belief learning with partial information’.

In this model, type 1 agent who holds a type 2 good believes that it meets
with another agent who holds a type 1 good with probability pt

1. If that agent
is type 2 (here we also assume that, without loss of generality, it occurs with
probability 0.510), type 1 agent trades, obtains a type 1 good and consumes it,
and produces a new type 2 good, otherwise that agent is type 3, so transaction
never takes place. Type 1 agent who holds a type 2 good believes that it meets
with another agent who holds a type 2 good with probability pt

2 and transaction
never take place. Type 1 agent who holds a type 2 good believes that it meets
with another agent who holds a type 3 good with probability pt

3 and transaction
never take place. Then the expected life time utility with the discount factor β
for type 1 agent who holds a type 2 good is as follows.

V12 =
β

3
[
pt
1

2
(U − D + 2V12) + (pt

2 + pt
3)V12] (6)

Similarly, the expected life time utility with the discount factor β for type 1
agent who holds a type 31 good is as follows.

V131 =
β

3
[
pt
1

2
(U − D + 2V12) + pt

2(−D + 2V12) + pt
3(−D + 2V12)] (7)

10 The conclusion does not change unless we consider quite an extreme case. Such an
extreme case, of course, possibly arises, but it’s a quite rare case.
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Hence,

V131 − V12 =
β

3
[(pt

1 + pt
2 + 2pt

3)(−D)] < 0 (8)

Therefore, a perishable good is never a medium of exchange when agent follows
belief learning with partial information. As we prove that Equilibrium A is never
attainable when agent follows belief learning with partial information, we didn’t
run any simulation of this model and we will not provide any result for that
model.

3.4 Model 4. Reinforcement Learning

In reinforcement learning model, each agent doesn’t care for what the other agent
do but care for its own payoff in each period. So, the distribution of goods doesn’t
matter in reinforcement learning. Each agent changes its behavior in accordance
with its local information. So this is the lowest information condition compared
with belief learning models.

Propensity of holding a type 31 good for type 1 agent, Rt
131

, is updated by
the following rule.

Rt+1
131

= δRt
131

+ It
1(U − D) + It

2(−D) (9)

Where δ(0 < δ < 1) is forgetting parameter, It
1 = 1 if the agent trades a good 3

for a good 1, and otherwise It
1 = 0, It

2 = 1 if the agent does not trades, disposes
its type 3 good and produces a new good 2, and otherwise It

2 = 0. Thus if It
1 = 0

and It
2 = 0, the agent trades its good 3 for good 2. In similar way, propensity of

holding a type 2 good for type 1 agent, Rt
12, is

Rt+1
12 = δRt

12 + It
12(U − D) (10)

With these propensities, type 1 agent trades its good 2 for a good 31 with the
following probability in the logit form,

P t
131

=
exp(λRt

131
)

exp(λRt
131

) + exp(λRt
12)

(11)

where λ ≥ 0 is the precision parameter.

3.5 Other Simulation Settings

In our simulation, parameters, U , D and p21, affect learning behavior of each
agent in belief learning. As for utility and cost, we fix D = 100 and vary the value
of U among 400, 523, and 800 when belief learning is tested. U = 523 is chosen
because it is the borderline of the equilibrium requirement. Two relatively high
and low values for or against attaining Equilibrium A, U = 800 and U = 400,
are chosen for comparisons. For reinforcement learning, we use U = 523 only
because reinforcement learning cannot be affected by these parameters as we
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explained before. As for the distribution of goods, we choose two extreme initial
distributions of goods for type 2 agent, p21 = 0 and p21 = 1. δ affect only the
speed of learning, so we fix δ = 0.9 without loss of generality. Although we also
varied λ among the values {0.5, 1.0, 2.0, 4.0}, agent’s behavior did not change
qualitatively. So we take λ = 1.0 as a representive case. There are totally 300
agent in the market where 100 agents are assigned for each type. Each run of
simulation consists of 50 periods, and 20 run of simulations are conducted.

4 Results

Table 4 shows the aggregate information of the number of transactions that
type 1 agents made.

At the first look, proportions of type 1 agent accepting a good 1 are almost
same among these four models. But proportions of type 1 agent accepting a good
3, a perishable good, are different among these four models. For belief learning
with full information, type 1 agent trades a good 2 for a good 3 more frequently
when U = 523 and 800. Type 1 agent had opportunity to trade a good 2 for a
good 3 totally 9932 (10060) times. Then they actually made such trades 6151
(10052) times when U = 523 (800). Note that even the equilibrium condition of
Equilibrium A, U

D > 5.2301, is satisfied, agent who follows belief learning with
full information does not trades a good 2 for a good 3 in 40% of times. On
the other hand, no such trade occurred in belief learning with full information
model when U = 400 and only a few trades occurred in reinforcement learning
model when U = 523 (0.37% of the total trades). This means that good 3 can be
money as the medium of exchange when each agent follows belief learning with
full information and utility from consuming a good is relatively high.

Table 4. The aggregate information of the number of type 1 agent’s transactions

Belief U = 523 Belief U = 800 Belief U = 400 Reinf. U = 523

type 1 agent trades 6151 / 9932 10052 / 10060 0 / 9984 362 / 9783
good 2 for good 30 (61.9%) (99.9%) (0.0%) (0.37%)

type 1 agent trades 16636 / 48232 16383 / 46428 17195 / 50586 17199 / 50546
good 2 for good 1 (34.5%) (35.3%) (34.0%) (34.0%)

To measure the degree of convergence to the steady state, we employ the
Euclidian distance between the distribution of goods in each time period and
one in the steady state, i.e.,

dt =
√

(pt
12 − p∗12) + (pt

21 − p∗21) + (pt
230

− p∗230
) + (pt

31 − p∗31) (12)

as a measure of convergence.
Fig. 4 shows time series data of the Euclidian distance in each case. The

Euclidian distance for belief learning with full information soon converges around
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Fig. 4. Euclidian distance between the distribution of goods in each period and in the
steady state

Fig. 5. The number of type 1 agents who accept type 3 good in reinforcement learning

the equilibrium, within Euclidian distance of 0.05 when U = 800. It performs well
as in theoretical model. On the other hand, when U = 400 belief learning with
full information performs as worse as reinforcement learning, it stays away from
the equilibrium with Euclidian distance 0.13 in average. Finally, when U = 523,
the performance of belief learning is in between these cases. Thus, this also
confirms that agent who follows belief learning with full information can learn
to use a perishable good as a medium of exchange when the utility for consuming
a good is relatively high.
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Fig. 5 shows average number of type 1 agents who accepted type 3 goods in
reinforcement learning. As shown in Fig. 5, agents who followed reinforcement
learning initially accepted type 3 goods. But as such agents were relatively fewer
in the whole population, they had little chance to meet type 3 agents who held
type 1 goods. So they needed to dispose their type 3 goods and suffered produc-
tion cost D in producing a new type 2 goods. Such experiences led them to learn
to refuse to accept type 3 good. This picture did not change when we varied the
value of λ. So, type 3 good could not be a medium of exchange among agents
who follows reinforcement learning.

5 Conclusions

In this study, followed by Cuadras-Morató [6]’s model of perishable medium of
exchange, we investigated whether a perishable good can be used as a medium
of exchange. We showed that, among four models, only belief learning model
with full information learns to use a perishable good as money in this economy.
Reinforcement learning performs relatively poor. But, interestingly, worst model
among four is belief learning with partial information. This means that provid-
ing partial information is rather detrimental for attaining a steady state in the
economy with perishable money. This is a bit unintuitive for us.

So far, several attempts have been made for checking whether speculative
equilibrium in Kiyotaki and Wright [13]’s model is attained in laboratory envi-
ronment with human subjects and in multi-agent simulation. Brown [3], Duffy
and Ochs [7] and Duffy [8] investigate Kiyotaki and Wright [13]’s model in the
laboratory with human subjects and show that speculative equilibrium is hardly
observed. Marimon, McGrattan, and Sargent [14], Başçı [1] and Rouchier [17]
also confirm this result in the multi-agent simulation.

Note that it is assumed in Kiyotaki and Wright [13]’s model that the informa-
tion about the distribution of goods is common knowledge among agents. But
no one in previous studies examined belief learning, which explicitly uses the
information of the distribution of goods, in their studies. Even though Duffy
and Ochs [7] and Duffy [8] provided such information to their subjects in their
laboratory studies, they did not use belief learning model to replicate subjects’
behaviors in their simulation. One could ask that the difficulty of attaining spec-
ulative equilibrium in the simulation may be due to the lack of the information
of the distribution of goods. In other words, simulation studies remove two basic
assumptions in Kiyotaki and Wright [13]’s model, (1) perfect rationality of agents
and (2) complete information of the distribution of goods, and then replace them
with (1) bounded rationality of agent and (2) informational uncertainty of the
distribution of goods. One may think that lacking of both basic assumptions is
too much for testing the theory.

Our results in Cuadras-Morató [6]’s model may indicate that if we would
provide full information about the distribution of goods in the Kiyotaki and
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Wright [13] economy, speculative equilibrium can be attained even by boundedly
rational agents who follow belief learning. We would like to prove this conjecture
in the future research.
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A Deriving the Steady State Distribution of
Equilibrium A

In this appendix, we will show how to derive the steady state distribution of
Equilibrium A. First, we check how the distribution of goods evolves if the con-
dition of Equilibrium A holds and every agent follows optimal trading strategies
in Table 1, 2, and 3. With this consideration, we construct a Markov process
of the evolution of the distribution of goods. Then we have the steady state
distribution corresponding to Equilibrium A.

Let’s consider how type 1 agent trades if it follows optimal trading strategy.

Case 1a. Type 1 agent who holds a type 2 good still holds a type 2 good in the
next period if
1. it meets another type 1 agent and does not trade,
2. or it meets a type 2 agent who holds a good 1, trade, and produces a

new type 2 good,
3. or it meets a type 2 agent who holds a good 31 and does not trade,
4. or it meets a type 3 agent who holds a good 1, trades, and produces a

new good 2,
5. or it meets a type 3 agent who holds a good 2 and does not trade.

Case 1b. Type 1 agent who holds a type 2 good holds a type 31 good in the
next period if it meets a type 2 agent who holds a good 30 and offers to
trade.

Case 2a. On the other hand, type 1 agent who holds a type 31 good holds a
type 2 good in the next period if
1. it meets a type 3 agent who holds a good 1, trades, and produces a new

good 2,
2. or it meets a type 3 agent who holds a good 2 and trades,
3. or it meets another type 1 agent or type 2 agent, does not trade, and its

type 3 good perishes, then it produces a new type 2 good.
Case 2b. Type 1 agent who holds a type 31 good still holds a type 31 good in

the next period is impossible.

Thus, the evolution of p1 = (p12, p131) consists a Markov chain, and its transition
matrix is as follows.

Π1 =
1
3

(
p12 + p131 + p21 + p231 + p31 + p32 p230

3 0

)

Analogously, we can derive the transition matrix for type 2 agent.

Π2 =
1
3

⎛
⎝p131 + 1 + p31 p12 + p32 0

p31 p12 + p32 p131 + 1
p31 2 + p32 0

⎞
⎠

where we used p12 + p131 = 1 and p21 + p230 + p231 = 1.
As we have shown, type 3 agent never receive type 2 good, so we have already

obtained it’s steady state distribution.
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p31 = 1 (13)

The condition for the steady state for type 1 agent is p1Π1 = p1. From this,
we have

p12(1 + p21 + p231 + 1) + 3p131 = 3p12 (14)

p12p230 = 3p131 (15)

The condition for the steady state for type 2 agent is p2Π2 = p2, where
p2 = (p21, p230 , p231). From this,

p21(p131 + 1 + p31) + p31(p230 + p231) = 3p21 (16)

p21(p12 + p32) + p230(p12 + p32) + p231(2 + p32) = 3p230 (17)

p230(p131 + 1) = 3p231 (18)

Thus, the steady state distribution of the goods implied by these strategies

p∗ = (p12, p230 , p21, p31) = (0.8967, 0.3456, 0.5272, 1.0000)

is obtained by solving equations (13) to (18) numerically.
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90010 Belfort Cedex, France

sebastian.rodriguez@utbm.fr
Tel.: + (33) 384 583 009

Abstract. Multi-Agent Based Simulations (MABS) for real-world prob-
lems may require a large number of agents. A possible solution is to
distribute the simulation in multiple machines. Thus, we are forced to
consider how Large Scale MABS can be deployed in order to have an effi-
cient system. Even more, we need to consider how to cluster those agents
in the different execution servers. In this paper we propose an approach
based on a holonic model for the construction and update of clusters of
agents. We also present two modules to facilitate the deployment and
control of distributed simulations.

1 Introduction

Multi-Agent Based Simulations (MABS in the sequel) are based upon the anal-
ogy between real world entities and autonomous and interacting agents. This is
a natural and intuitive approach for problem simulation.

However, for real world problems, MABS frequently leads to a great number
of agents. Any MAS platform, such as FIPA-OS[18], JADE[1] or MadKit[14],
inherits operating system and hardware layers constraints e.g. memory, cpu and
thread number limits.

In this context we are forced to consider how Large Scale MABS can be
deployed in order to have an efficient system. A possible solution is to profit from
MAS’ intrinsic decentralized nature to distribute agents on several computers.

Two issues have then to be considered. First, how to group agents that will
execute in the same machine. And second, how do we deploy and control a
distributed system or simulation.

In order to support the decentralized characteristic of the agent paradigm, we
need to provide the MAS with a platform that enables distributed interactions in
a transparent way from the agent’s point of view. To face this problem, we pro-
pose two plugins for the MadKit platform [14] that facilitate MAS deployment
and the control of a distributed simulation.

We also discuss the issue of how to create the clusters of agents that will
be sent to the machines. Indeed, before distributing the MAS, we need to find
means to create clusters of agents that will execute in the same machine. To
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tackle this problem we define a distribution logic using the holonic paradigm.
This distribution follows the holon organizational structure.

Holons were defined by Koestler [15] as self-similar structures composed of
holons as substructures. They are neither parts nor wholes in an absolute sense.
The organizational structure defined by holons, called holarchy, allows the mod-
elling at several granularity levels. Each level corresponds to a group of interact-
ing holons.

The paper is organized as follows: section 2 presents our approach for holonic
modelling and illustrates it with the traffic simulation model of a big plant.
Section 2 presents the principles of the MadKit platform and the two plugins
we have created to handle large scale MABS. Section 4 details the plant traffic
simulation and section 5 concludes.

2 Holonic Modelling of Large Scale Simulations

One of the issues discussed in this paper is: how do we create the clusters of
agents that will be sent to the machines?

In our approach we will base that decision on the holarchy. In the next section
we briefly introduce our framework for holonic MAS. For a complete definition of
this framework see [22,23]. [21] presents an approach for environment modelling
using this framework and in [20] we have proven pertinent properties about this
framework.

2.1 Holonic Framework

Holonic MAS have attracked recently much interest of the DAI community.
These types of systems have been applied to a wide range of domains such as
Transports [3], Manufacturing Systems [25,16], etc.

However most of the frameworks proposed to model them are strongly related
to their domain of application. This renders the approach sometimes difficult to
apply to other problems. In an attempt to solve this drawback, we based our
framework in an organizational approach [23]. The framework uses then organi-
zations to model the status of the members (sub-holons) in the composition of
higher level holons (super-holons) and to model the interactions of the members
to achieve their goals/tasks.

We have adopted a moderated group structure for holonic MAS[12]. This
decision is based on the wide range of configurations that are possible by modi-
fying the commitments of the members toward their super-holon. In a moderated
group, we can differentiate two status for the members. First, the moderator or
representative, who acts as the interface with non-member holons, and, second,
represented members, who are masked to the outside world by their representa-
tives. Even if we use the name “Moderated Group” for compatibility with earlier
works in this domain, it can be misleading. As we see it, the structure does
not necessarily introduced any authority or subordination. The name makes
reference to the different status found in the group. We can then adapt this
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organization by giving the representatives specific authorities according to the
problem or constraints.

In order to represent a moderated group as an organization we have identified
a set of roles that can represent these concepts. We have chosen to use four roles
to describe a moderated group as an organization: Head, Part, Multi-Part and
StandAlone. The three first roles describe a status of a member inside a super-
holon. The Stand-Alone role represents, on the other hand, how non-members
are seen by an existing holon.

Fig. 1. RIO Diagram of the holons
members

Fig. 2. RIO Diagram of the Merging
Organization

As shown in the figure 1 the representatives of the super-holon play the Head
role. A Head member becomes then part of the visible face of the super-holon.
This means that the head becomes a kind of interface between the members of
the holon and the outside world. The head role can be played by more than one
member at the same time.

The members can confer the head a number of rights or authorities. According
to the level of authority given to heads, super-holon can adopt different config-
urations. Thus, the Head role represents a privileged status in the super-holon.
Heads will generally be conferred with a certain level of authority. However, these
members have also an administrative load. This load can be variable depending
on the selected configuration.

It is important to remark that when a set of holons merge into a super-holon
a new entity appears in the system. In this case, they are not merely a group of
holon in interaction as in “traditional” MAS theory. The super-holon is then an
entity of its own right. Thus, it has a set of skills, is capable of taking roles, etc.
At the same time, as Heads constitute the interface of the super-holon, they
are in charge of redistributing the information arriving from the outside. And,
thus to “trigger” the (internal) process that will produce the desired result. The
Part role identifies members of a single holon. These members are represented
by Heads within the outside world. While the holon belongs to a single super-
holon, it will play this role. However, when the holon is not satisfied with its
current super-holon it has two possibilities. The first is to quit its super-holon
entirely and try to find a new holon to merge and collaborate with. The second
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is to try to merge with a second super-holon while remaining as a member of
the first super-holon. In this case the holon will change his role to Multi−Part.
The Multi − Part role is an extension of the Part role. It puts emphasis on a
particular situation when a sub-holon is shared by more than one super-holon.

In order to support the integration of new member, we need to provide ex-
ternal holons with a “standard” interface so they can request their admition.
From the super-holons point of view, external holons are seen as StandAlone
role players. When a super-holon is created, only Heads belong to the inter-
face of the super-holon. Thus, other members (Part and MultiPart) should not
be visible by external holons. This is modeled by the organization presented in
figure 2. In this organization, StandAlone holons may interact only with the
heads of the super-holon.

2.2 Holarchy Example

In order to illustrate our framework we take an example and describe it with
holonic concepts. This example consists in a simplified University. Imagine that
we model the university as composed of Departments and research Laborato-
ries. They are in turn composed of Professors and Researchers respectively. If
we isolate the Computer Science and Laboratory Holon and their components
from the university example and we add these holonic roles, we obtain figure 3.
Part role players for the laboratory represent researcher that belong only to the
laboratory, e.g. full time researchers. On the other hand, some researcher may,
in addition to their activities in the laboratory, give lectures in the computer
science department. These holons, like holon RP in figure 3, belong to both
super-holons simultaneously and thus they play the MultiPart role. In this ex-
ample, the department and laboratory directors would be the Heads of the C.S.
Department and the laboratory respectively.

Fig. 3. Department and Laboratory Holons
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As we mentioned earlier other organization will be used to specify domain
dependant interactions (e.g. a Lecture Organization to describe how professors
interact with their students) [23].

Based on these holonic roles –Head, Part and MultiPart– we have defined
mechanisms to handle holons dynamics. They are based upon the affinity and
satisfaction between holons. The notion of Affinity was inspired by a technique
used for the Artificial Immune System [6]. The term Satisfaction has often been
used to represent the gratification of an agent concerning its current state or the
progress of its goals/tasks [5,24].

The affinity between holons must be defined according to the domain of the
application. The affinity measures, according to the application’s objectives, the
compatibility of two holons to work together toward a shared objective.

The compatibility of two holons means that they can provide help to each
other to progress towards their goals. Based on the application’s objective, we
define a set of rules that allow us to evaluate this compatibility. Generally speak-
ing, we can say that two holons are compatible if they have shared goals and
complementary services.

Using these two notions, holons are able to decide when they should join or
leave a super-holon (satisfaction) and with which super-holon to merge with
(affinity). Holons can then move from one super-holon to another as the system
(in our case simulation) evolves.

2.3 PSA Simulation Model

We propose the use of holarchies for the modelling of simulation environments.
In the Peugeot SA (PSA in the sequel) plant example we want to simulate the
traffic within the plant. The environment of this simulation is defined by the
topology of the plant. The agents will be the different vehicles driving through
the plant.

The environment will be represented by a holarchy. This holarchy defines
the organizational and topological structure in which agents will evolve. Each
environmental holon will enforce contextual physical laws and represent a specific
granularity level of the real plant topology. This holarchy is predefined as it
represents the real plant environment. Indeed, the latter cannot change and the
physical laws we need to enforce are known a priori. In order to represent the
geographical environment of the plant as a holarchy we have to find recursive
concepts which represent the plant’s environment parts. The concepts we have
chosen are described in the figures 4 and 5.

Figure 4 shows that a road is divided into links. A link represents a one way
lane of a road. A segment is composed of, at least, two exchange points, called
input and output exchange points, and a link. Exchange points let vehicles pass
from one link to the other. An exchange point is always shared by at least two
segments.

In the figure 5 we can see that the industrial plant is composed of a set of
zones, that in turn contain Buildings and Segments. Buildings and Segments can
also communicate through shared exchange points. Usually an exchange point
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Fig. 4. Roads, Segments, Links and Ex-
change Points
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Fig. 5. Conceptual view of the plant

represents a crossroad, but in can also represent an entrance used by trucks to
access buildings. A zone may also be decomposed in smaller zones which contains
Buildings and Segments and so on recursively.

This decomposition also gives us important information about the roles
involved. Let us consider the ExchangePoint role. This role represents an ex-
change point between physical entities such as roads and buildings. An Exchange-
Point can then be specialized to respect certain constraints, for example, a door
lets a human get into a building but it’s impossible for a car to use it. As we can
see the exchange point is a “special” role from the “holonic point of view” since
the role is actually shared by more than one holon by definition. Note that this
situation differs from the one where a particular holon plays the multi-part role.
In this case, we know that the holon preforming this role will be shared by at
least two holons prior to the simulation, even more, we can even know exactly to
which two super-holons. Such a hierarchical decomposition of the environment
presents several advantages when compared to a global representation. First, no
size limit is imposed by the model, this enables us to use the same environment
decomposition to simulate the traffic inside a city or a (much) smaller industrial
plant. Some semantical information could be introduced, like this, instead of
zones, we will represent quarter, block, etc. [7].

Second, all necessary information to simulate the traffic inside a link is local
(other vehicles, roadsigns, etc). This makes the model easier to distribute in a
network and leaves the door open to Real-time applications as well as Virtual
Reality implementations.

It is important to notice that the decomposition may continue in order to
provide a higher level of detail. It provides a simple way of decomposing different
types of environments. For instance, a building itself can be decomposed in
Rooms and Exchange Points(doors).
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On the other hand, this type of decomposition imposes a highly hierarchical
and decentralized representation of the environment. This could present some
disadvantages when the environment presents some global ”variables” accessible
for all agents.

In our model, the vehicle agent is able to change a set of variable that affect
the vehicle’s state. These variables are later used by the environment to adjust
the vehicle’s speed according to the environmental principles and rules. Vehicles
can query their current link to obtain information about road signs, traffic lights,
maximal speed limits, etc. They can also request information about adjacent link
to the exchange points.

3 Modules for Large Simulations

The model presented in the previous section considers how to cluster agents into
coherent groups according to the application. However, it assumes that all holons
in the system can communicate regardless of their physical location. To enable
this behavior, we propose two plugins for the MadKit platform. An overview
is presented in figure 6. The first plugin (NetComm), presented in section 3.2,
is in charge of generating and maintaining the “Virtual Community” between
kernels. On top of that community the second plugin (SimSever), presented in
section 3.3, offers the possibility to distribute and control a simulation.

Before we detail the architecture of these plugins, let us first briefly review
MadKit ’s principles.

3.1 MadKit Principles

MadKit is built upon the AGR model [8] illustrated in figure 7. This model
is based on the following organizational concepts: Agent, Group and Role. An

Fig. 6. Plugins Overview
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agent is an active, communicating entity playing roles within groups. An agent
may hold multiple roles, and may be a member of several groups. An important
characteristic of the AGR model is that no constraints are placed upon the
architecture of an agent or about its mental capabilities. Thus, an agent may be
reactive as an ant, or deliberative with mental states.

A group is a set of agents sharing some common characteristics. A group is
used as a context for a pattern of activities. Two agents may communicate if
and only if they belong to the same group, but an agent may belong to several
groups.

A role is the abstract representation of a functional position of an agent in
a group. An agent must play at least a role in a group, but an agent may play
several roles. Roles are local to groups, and a role must be requested by an agent.
A role may be played by several agents.

Fig. 7. AGR Model from [13]

The MadKit platform proposes libraries to create/join groups, take roles,
send messages to other agents via the roles they play, etc. It is written in JAVA
using the micro-kernel principle. A MadKit kernel is created before agents are
launched and intercept all service calls.

3.2 Transparent Connection of Kernels

One interesting characteristic of the MadKit platform is that, from the agent’s
perspective, there is absolutely no difference between the communication with
local agents and the communication with distant agents.

Even if MadKit offered a plugin, called Communicator, to interconnect ker-
nels, it presented a few disadvantages. Among them, the Communicator offers
a single ”hard coded” protocol for the communication between kernels. This
approach restricts the network capabilities evolutions of the platform. It also
required to know a priori the distant kernel’s address and port.

To tackle these problems, we developed a new plugin for MadKit called
NetComm. This plugin presents a multi-agent design, allowing different protocol
to be used and featuring an automatic detection and connection of existing
kernels in the network.
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The underlying idea of the NetComm Module is to have a group of agents
that will manage all incoming and outgoing communication. Each foreign kernel
will interact with one local agent in commonly selected protocol. This approach
lets us envisage a number of different protocols, that will be selected according
to the situation.

Following the MadKit architecture, a specific agent must register as the
Communicator, or Communication Responsible. In NetComm this agent is the
NetAgent. The NetAgent is a sort of representative of all other agents in the
communications module. We now briefly describe the main agents present in the
module. Figure 8 shows the general structure of the NetComm Plugin.

Fig. 8. NetComm Overview

The NetAgent can be called the main agent of Netcomm. This agent will
represent the whole communication system in front of the local kernel.

The RouterAgent agent takes care of routing the messages received from
the NetAgent to the P2PAgent responsible of the connection with the concerned
Kernel.

The NetConfig agent is launched every time a new kernel is going to be
connected. First the agent will try to know whether at the other end there
is a CommunicatorAgent (the original communication module of MadKit ) or
another NetConfigAgent. If the agent is interacting with a Communicator agent,
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an instance of the Communicator compatible agent will be launched. When
interacting with a NetConfigAgent, a protocol is followed to establish a common
protocol. If a common protocol is found, it will be sent and the corresponding
P2PAgent will be launched.

The P2PAgent is the super class of the agents responsible for the connections
with other kernels. Several types of P2PAgents exist like the SSLAgent enabling
SSL communications.

The StatAgent keeps track of the network usage statistics. The statistics can
be enabled or disabled in real-time by sending a NetConfigMessage. In the time
being the StatAgent reports only through its graphical interface. However future
work will enable this agent to log the network traffic in a file for later analysis.

Three different agents, the Listeners, are in charge of listening incoming
requests, one per used protocol. Thus we have a TCP, UDP and Broadcast
Listeners. Incoming request will start a new NetConfigAgent to configure the
connection with the foreign kernel.

This plugin is concerned with the discovery of new kernels in the network and
provides the Virtual MadKit Community that we need to deploy our agents. It
is important to notice, that the network may grow at runtime. Indeed, new ker-
nels can be integrated to the community dynamically, since MadKit ’s kernels
can synchronize their information.

3.3 Distribution of a Simulation

The NetComm plugin described previously gives us the possibility to consider
that all kernels in the system are capable of automatically connecting, thus pro-
viding a unique virtual MadKit Community. The second problem to tackle is
the distribution of the agents themselves. A second module was developed for
this purpose, called SimServer. In distinction with NetComm, it does not intend
to be a generic plugin for any simulation. This plugin tries to reduce the develop-
ment time to distribute a simulation for all those that do not need to introduce
a migration mechanism into agents. Even if we used the NetComm plugin to
interconnect the kernels, we could use any other means to connect the kernel,
the communicator or a third module. This is to say that the SimServer plugin is
completely independent of the NetComm plugin. In top of the MadKit ”Virtual
Community” a number of groups are created to control and observe the simula-
tion. The first is the ”Simulation Status”. This group aims to provide statistics
of the state of the servers in terms of memory, cpu load, etc. The organization
consists of three roles: StatusManager,StatusRequester and ServerInformer. The
ServerInformer is in charge of collecting the information of the server where
it is running and informs the Status Manager. This information contains, but is
not limited to, memory, cpu load, simulations running in the server and agents
per simulation.

The StatusManager collects the information and formats it for logs and
special request.
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The StatusRequester role is played by agents willing to get information
about a simulation or the status of the servers. It requests the information to
the StatusManager. For instance, a simulator will typically have the possibility
to show to the user information about servers where the user’s simulation is
running on. For this, an agent should play the StatusRequester roles to get the
required information.

Fig. 9. Sequence diagram used to create a new Simulation

When a new simulation needs to be created a specific protocol must be fol-
lowed. An organizational sequence diagram (this type of diagrams was presented
in [9]) illustrates this protocol in figure 9.

1. An agent takes the SimulationClient role. This agent creates a group for the
simulation. This group will be used to control the simulation itself.

2. The client broadcasts a message to all SimulationServer role players. This
message informs the servers that a new Simulation needs to be created.
The message contains information about requirements of the simulation, e.g.
number of agents to be created, name of the group to control the simulation,
etc.

3. Servers interested in participating in the simulation join the simulation man-
agement group created in step 1. This decision is based on the status of the
server it represents, i.e. cpu and memory load, number of agent already run-
ning in the server, etc.

4. The SimulationManager (role of the Control group) distributes the required
information to instantiate the agent required for the simulation, e.g. the
agents identifiers, classes to load, etc.
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5. Once all the servers acknowledge that they are ready to start, the Simula-
tionManager may start sending Control messages to the server in its group,
i.e. start, stop, etc.

The module contains a default implementation of the agents that provide a
basic support. These agents are a generic implementation and make a number
of assumptions. However, they can be used as starting point to develop a more
suitable implementation, in particular for the simulation controllers.

4 Simulation

As presented in section 2.3, the environment is modeled as a holarchy. Each
holon of this holarchy represents a specific context. For the PSA example it’s a
specific place in the plant. These places have different granularity levels according
to their level in the holarchy. During the simulation, vehicle agents move from
one holon to another and the granularity is chosen by execution or simulation
constraints such as which features can be observed.

The dynamic choice of the environment granularity level during the simu-
lation must be transparent for the agents. In order to do this, agents use our
holonic framework and specifically ExchangePoint holons which enable the com-
munication between holons of the same level and connected in the plant’s topol-
ogy. The figure 10 describes the sequence of messages exchanged between the
ExchangePoint, a vehicle and the Segment’s Head. The vehicle agent is moving
along the segment 1 and requests the exchange point to forward a merging re-
quest. The exchange point forwards the request and receives a reply. The reply
is forwarded to the vehicle. If the reply is positive the vehicle can merge with the
segment 2 holon as shown in figure 11. These interaction sequences are a mean
to represent the influence/reaction model [10]. Indeed, the agent emits influences
in asking to merge with a specific holon. The environment is able to determine
the eventual answer according to jams or environment properties.

Notice that using this mechanism does not require the environmental holons to
execute in the same kernel (or machine). Indeed, the virtual community, created
using the NetComm plugin, enables holons to communicate transparently. When
vehicle holons move between segments, they also move to the segment’s execution
kernel. Like this, most frequent interactions (e.g. between the link and the vehicle
and between vehicles in the same link) will always be executed locally. So, clusters
of agents are created on different machines following the structure of the holarchy.

The whole simulation can be controlled and observered using the SimServer
Plugin.

This approach enables one to describe the environment with multiple levels
of granularity; examples are given in figures 12 and 13. In figure 12 we can view
the simulation of several roads, crossroads and buildings. The figure 13 is a more
fine grain simulation of a crossroad. Nevertheless the simulation of the rest of
the plant is always running in the two cases.
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Fig. 10. Access request sequence Fig. 11. If accepted, the vehicle
moves to the next segment

Fig. 12. View of different crossroads and
buildings

Fig. 13. Crossroad close up

5 Related Works

Two problems are frequently encountered during MABS [2]. First, how to model
the agents and their environment to exploit inherent agents parallelism. Second,
how to choose an appropriate grain size for the simulation. These two prob-
lems are related. Indeed, chosing an inappropriate grain size could hamper the
distribution of the simulation [2].
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In the sequel we compare our work with existing approaches combining con-
cepts for the conceptual distribution of MABS with implementation support.

The PDES-MAS project approach [2] consists in partitioning the environment
in zones called “interest areas” or “spheres of influence” concept similar to holons
in our case. It is a specific locus of interaction and perception for agents. These
clusters execute concurrently. The drawback of this approach is that it doesnt
take into account multiple granularities.

The MACE3J architecture [11] is based on two modelling hypothesis. First,
there exists an organizational structure called ActivationGroup which is a group
of agents acting in relation with each another. This structure is implemented by
an object which contains services such as: scheduler, time manager, environment,
... Second, agents havent any imposed architecture but must implement the
Registerable JAVA interface which allows request from the ActivationGroup.
These agents group result in a flat architecture such as the one use within the
MadKit platform [14].

The MadKit platform [14] proposes mechanisms which ease the deployment of
distributed simulations. We have already discussed in the section 3 the drawbacks
of these mechanisms. The conceptual model of MadKit , namely AGR, does not
propose any clustering concept except the organization. It may be difficult to take
into account efficiency problems of a distribution only based upon organizations.

The RePast [4] agent simulation toolkit, which uses the ideas of the well-known
SWARM platform [17], offers services to display and monitor simulations. To our
knowledge there is no facility proposed for the distribution of simulations. The
SPADES system [19] propose an architecture for deploying parallel or distributed
simulations based on a discrete simulation engine. The agents must be based on
a sense/think/act loop which is not a strong assumption. The drawback of this
approach is that it supposes that events are centralized in a master process which
has complete knowledge of all pending events. This hypothesis may hinder the
scalability of MABS.

6 Conclusion

In this paper we have presented an approach to model and deploy large scale
and variable scale MABS. This approach is based upon holonic MAS and is
supported by two plugins which ease the distribution, monitoring and control of
simulations hence reducing the complexity of deploying distributed MABS.

The distribution and clustering of agents follows the holarchy structure and
thus reduces distant message passing. This issue is frequently discussed in
approaches for distributed MABS. Each holon defines a cluster of agents ex-
ecuting on a same computer or part of a network. These agents share the same
part of the environment. The interactions are thus mostly locals. Even more,
agents may change their executing machine as they move in the environment.
The distribution also allows the connection of the simulation to visualization
tools such as Virtools as it is the case in figures 12 and 13.
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The first plugin, NetComm, was designed to allow an automatic connection
of the MadKit kernels in a network. These connections allow the creation of a
virtual community so that the distribution of kernels is transparent. NetComm
also enables the creation of new kernels and or the relocation of existing kernels.
The second plugin, SimServer, enables the distribution of agents, the manage-
ment and monitoring of the simulation. By distribution of agents we mean that
an agent must belong to a specific kernel which may change during its lifetime.
This kernel change is illustrated by an example in figures 10 and 11. Management
and monitoring facilities are provided in order to control the overall simulation
and to be able to visualize the simulation results. Both are plugins for the Mad-

Kit platform. These modules allows the execution of a great number of agents.
Among the future works, we plan the integration of analytic tools in the plugins.
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24. Simonin, O., Ferber, J.: Modélisation des satisfactions personnelle et interac-
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Abstract. Agent-based modeling is a powerful tool for systems modeling. In-
stantiating each domain entity with an agent captures many aspects of system 
dynamics and interactions that other modeling techniques do not. However, an 
entity’s agent can execute only one trajectory per run, and does not sample the 
alternative trajectories accessible to the entity in the evolution of a realistic sys-
tem. Averaging over multiple runs does not capture the range of individual in-
teractions involved. We address these problems with a new modeling entity, the 
polyagent, which represents each entity with a single persistent avatar supported 
by a swarm of transient ghosts. Each ghost interacts with the ghosts of other 
avatars through digital pheromone fields, capturing a wide range of alternative 
trajectories in a single run that can proceed faster than real time. 

1   Introduction 

The fundamental entity in an agent-based model (ABM), the agent, corresponds to a 
discrete entity in the domain. The fundamental operator is interaction among agents. 
The fundamental entity in an equation-based model (EBM) [22] is a system observ-
able, and the fundamental operator is its evolution (e.g., by a differential equation). 

ABM’s often map more naturally to a problem than do EBM’s, are easier to con-
struct and explore, and provide more realistic results [17, 21], but have a shortcoming. 
Observables in an EBM are often averages across agents, and implicitly capture the 
range of agent variation (at an aggregate level). By contrast, the agent representing an 
entity in an ABM can execute only one trajectory per run of the system, and does not 
capture the alternative trajectories that the entity might have experienced. Averaging 
over multiple runs still does not capture the range of individual interactions involved.  

A new modeling construct, the polyagent, represents each entity with a single per-
sistent avatar and multiple transient ghosts. Each ghost interacts with the ghosts of 
other avatars through digital pheromones, exploring many alternative trajectories in a 
single run that can proceed faster than real time for many reasonable domains. We 
have used this approach in several applications. This paper articulates the polyagent 
as an explicit modeling construct and provides some guidance concerning its use.  

Section 2 reviews the sampling challenge sampling in ABM. Section 3 proposes 
the polyagent as an answer to this challenge, and Section 4 compares it with other 
technology. Section 5 reports on polyagent systems we have constructed. Section 6 
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discusses what these examples teach us and considers directions for research on 
polyagents. Section 7 concludes. 

2   The Challenge of Modeling Multi-agent Interactions 

Imagine n + 1 entities in discrete time. At each step, each entity interacts with one of 
the other n. Thus at time t its interaction history h(t) is a string in nt. Its behavior is a 
function of h(t). This toy model generalizes many domains, including predator-prey 
systems, combat, innovation, diffusion of ideas, and disease propagation.  

It would be convenient if a few runs of such a system told us all we need to know, 
but this is not likely to be the case, for three reasons. 

1. We may have imperfect knowledge of the agents’ internal states or details of the 
environment (for example, in a predator-prey system, the carrying capacity of the 
environment). If we change our assumptions about these unknown details, we can 
expect the agents’ behaviors to change. 

2. The agents may behave non-deterministically, either because of noise in their 
perceptions, or because they use a stochastic decision algorithm.  

3. Even if the agents’ reasoning and interactions are deterministic and we have ac-
curate knowledge of all state variables, nonlinearities in decision mechanisms or 
interactions can result in overall dynamics that are formally chaotic, so that tiny 
differences in individual state variables can lead to arbitrarily large divergences 
in agent behavior. A nonlinearity can be as simple as a predator’s hunger thresh-
old for eating a prey or a prey’s energy threshold for mating. 

An EBM typically deals with aggregate observables across the population. In the 
predator-prey example, such observables might be predator population, prey popula-
tion, average predator energy level, or average prey energy level, all as functions of 
time. No attempt is made to model the trajectory of an individual entity.  

An ABM must explicitly describe the trajectory of each agent. In a given run of a 
predator-prey model, depending on the random number generator, predator 23 and 
prey 14 may or may not meet at time 354. If they do meet and predator 23 eats prey 
14, predator 52 cannot later encounter prey 14, but if they do not meet, predator 52 
and prey 14 might meet later. If predator 23 happens to meet prey 21 immediately af-
ter eating prey 14, it will not be hungry, and so will not eat prey 21, but if it did not 
first encounter prey 14, it will consume prey 21. And so forth. A single run of the 
model can capture only one set of many possible interactions among the agents.  

In our general model, during a run of length τ, each entity will experience one of nτ 
possible histories. (This estimate is of course worst case, since domain constraints 
may make many of these histories inaccessible.) The population of n + 1 entities will 
sample n + 1 of these possible histories. It is often the case that the length of a run is 
orders of magnitude larger than the number of modeled entities (τ >> n).  

Multiple runs with different random seeds is only a partial solution. Each run only 
samples one set of possible interactions. For large populations and scenarios that per-
mit multiple interactions on the part of each agent, the number of runs needed to sam-
ple the possible alternative interactions thoroughly can quickly become prohibitive. In 
the application described in Section 4.3, n ~ 50 and τ ~ 10,000, so the sample of the 
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space of possible entity histories actually sampled by a single run is vanishingly 
small. We would need on the order of τ runs to generate a meaningful sample, and 
executing that many runs is out of the question. 

We need a way to capture the outcome of multiple possible interactions among 
agents in a few runs of a system. Polyagents are one solution to this problem. 

3   The Polyagent Modeling Construct 

A polyagent represents a single domain entity. It consists of a single avatar that man-
ages the correspondence between the domain and the polyagent, and a swarm of 
ghosts that explore alternative behaviors of the domain entity. 

The avatar corresponds to the agent representing an entity in a conventional multi-
agent model of the domain. It persists as long as its entity is active, and maintains 
state information reflecting its entity’s state. Its computational mechanisms may range 
from simple stigmergic coordination to sophisticated BDI reasoning. 

Each avatar generates a stream of ghost agents, or simply ghosts. Ghosts typically 
have limited lifetime, dying off after a fixed period of time or after some defined 
event to make room for more ghosts. The avatar controls the rate of generation of its 
ghosts, and typically has several ghosts concurrently active.  

Ghosts explore alternative possible behaviors for their avatar. They interact with 
one another stigmergically, through a digital pheromone field, a vector of scalar val-
ues (“pheromone flavors”) that is a function of both location and time. That is, each 
ghost chooses its actions stochastically based on a weighted function of the strengths 
of the various pheromone flavors in its immediate vicinity, and deposits its own 
pheromone to record its presence. A ghost’s “program” consists of the vector of 
weights defining its sensitivity to various pheromone flavors.  

Having multiple ghosts multiplies the number of interactions that a single run of 
the system can explore. Instead of one trajectory for each avatar, we now have one 
trajectory for each ghost. If each avatar has k concurrent ghosts, we explore k trajecto-
ries concurrently. But the multiplication is in fact greater than this. 

The digital pheromone field supports three functions [1, 10]: 

1. It aggregates deposits from individual agents, fusing information across multiple 
agents and through time. In some of our implementations of polyagents, avatars 
deposit pheromone; in other, ghosts do. Aggregation of pheromones enables a 
single ghost to interact with multiple other ghosts at the same time. It does not in-
teract with them directly, but only with the pheromone field that they generate, 
which is a summary of their individual behaviors. 

2. It evaporates pheromones over time. This dynamic is an innovative alternative to 
traditional truth maintenance in artificial intelligence. Traditionally, knowledge 
bases remember everything they are told unless they have a reason to forget 
something, and expend large amounts of computation in the NP-complete prob-
lem of reviewing their holdings to detect inconsistencies that result from changes 
in the domain being modeled. Ants immediately begin to forget everything they 
learn, unless it is continually reinforced. Thus inconsistencies automatically re-
move themselves within a known period.  

3. It propagates pheromones to nearby places, disseminating information.  
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This third dynamic (propagation) enables each ghost to sense multiple other agents. If 
n avatars deposit pheromones, each ghost’s actions are influenced by up to n other 
agents (depending on the propagation radius), so that we are exploring in effect n*k 
interactions for each entity, or n2*k interactions overall. If individual ghosts deposit 
pheromones, the number of interactions being explored is even greater, on the order 
of kn. Of course, the interactions are not played out in the detail they would be in a 
conventional multi-agent model. But our empirical experience is that they are re-
flected with a fidelity that is entirely adequate for the problems we have addressed. 

Pheromone-based interaction not only multiplies the number of interactions that we 
are exploring, but also enables extremely efficient execution. In one application, we 
support 24,000 ghosts concurrently, faster than real time, on a 1 GHz Wintel laptop.  

The avatar can do several things with its ghosts, depending on the application. 

• It can activate its ghosts when it wants to explore alternative possible futures, 
modulating the rate at which it issues new ghosts to determine the number of alter-
natives it explores. It initializes the ghosts’ weight vectors to define the breadth of 
alternatives it wishes to explore. 

• It can evolve its ghosts to learn the best parameters for a given situation. It moni-
tors the performance of past ghosts against some fitness parameter, and then breeds 
the most successful to determine the parameters of the next generation.  

• It can review the behavior of its swarm of ghosts to produce a unified estimate of 
how its own behavior is likely to evolve and what the range of likely variability is. 

4   Comparison with Other Paradigms 

Our polyagent bears comparison with several previous multi-agent paradigms and two 
previous uses of the term (Table 1). 

Polyagents are distinct from the common use of agents to model different functions 
of a single domain entity. For example, in ARCHON [23], the domain entity is an 
electrical power distribution system, and individual agents represent different func-
tions or perspectives required to manage the system. In a polyagent, each ghost has 
the same function: 
to explore one pos-
sible behavior of 
the domain entity. 
The plurality of 
ghosts provides, not 
functional decom-
position, but a 
range of esti- 
mates of alternative 
behaviors.  

Many forms of 
evolutionary com-
putation [4] allow 
multiple representa-
tives of a single  

Table 1. Comparing the 
Polyagent with Other Tech-
nologies 
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entity to execute concurrently, to compare their fitness. In these systems, each agent 
samples only one possible series of interactions with other entities. Pheromone-based 
coordination in the polyagent construct permits each ghost to adjust its behavior based 
on many possible alternative behaviors of other entities in the domain. 

Similarly, the multiple behaviors contemplated in fictitious play [8] take place 
against a static model of the rest of the world. 

Like the polyagent, ant-colony optimization [2] uses pheromones to integrate the 
experiences of parallel searchers. The polyagent’s advance is the notion of the avatar 
as a single point of contact for the searchers representing a single domain entity. 

The term “polyagent” is a neologism for several software agents that collectively 
represent a domain entity and its alternative behaviors. The term is used in two other 
contexts that should not lead to any confusion. In medicine, “polyagent therapy” uses 
multiple treatment agents (notably, multiple drugs combined in chemotherapy). 
Closer to our domain, but still distinct, is the use of the term by K. Kijima [6] to de-
scribe a game-theoretic approach to analyzing the social and organizational interac-
tions of multiple decision-makers. For Kijima, the term “poly-agent” makes sense 
only as a description of a system, and does not describe a single agent. In our  
approach, it makes sense to talk about a single modeling construct as “a polyagent.”  

5   Examples of Polyagents 

We discovered polyagents by reflecting on several applications that we have con-
structed and observing their common features.  

5.1   Factory Scheduling 

Our first application of polyagents was to real-time job-shop scheduling [1]. We pro-
totyped a self-organizing multi-agent system with three species of agents: processing 
resources, work-pieces, and policy agents. Avatars of processing resources with  
different capabilities and capacities and avatars of work-pieces with dynamically 
changing processing needs (due to re-work) jointly optimize the flow of material 
through a complex, high-volume manufacturing transport system. In this application, 
only the avatars of the work-pieces actually deploy ghosts. The policy agents and ava-
tars of the processing resources (machines) are single agents in the traditional sense. 

In a job shop, work-pieces interact with one another by blocking access to the re-
sources that they occupy, and thus delaying one another. Depending on the schedule, 
different work-pieces may interact, in different orders. Polyagents explore the space 
of alternative routings and interactions concurrently in a single model. 

Work-piece avatars currently loaded into the manufacturing system continuously 
deploy ghosts that emulate their decision processes in moving through various deci-
sion points in the manufacturing process. Each of these decisions is stochastic, based 
on the relative concentration of attractive pheromones in the neighborhood of the next 
decision point. These pheromones are actually deposited by the policy agents that try 
to optimize the balance of the material flow across the transport network, but they are 
modulated by the ghosts. Thus, an avatar’s ghosts modulate the pheromone field to 
which the avatar responds, establishing an adaptive feedback loop into the future. 
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The avatars continuously emit ghosts that emulate their current decision process. 
The ghosts travel into the future without the delay imposed by physical transport and 
processing of the work-pieces. These ghosts may find the next likely processing step 
and wait there until it is executed physically, or they may emulate the probabilistic 
outcome of the step and assume a new processing state for the work-piece they are 
representing. In either case, while they are active, the ghosts contribute to a phero-
mone field that reports the currently predicted relative load along the material flow 
system. When ghosts for alternative work-pieces explore the same resource, they in-
teract with one another through the pheromones that they deposit and sense.  

By making stochastic decisions, each ghost explores an alternative possible routing 
for its avatar. The pheromone field to which it responds has been modulated by all of 
the ghosts of other work-pieces, and represents multiple alternative routings of those 
work-pieces. Thus the ghosts for each work-piece explore both alternative futures for 
that work-piece, and multiple alternative interactions with other work-pieces. 

Policy agents that have been informed either by humans or by other agents of the 
desired relative load of work-pieces of specific states at a particular location in turn 
deposit attractive or repulsive pheromones. Thus, through a local adaptive process, 
multiple policy agents supported by the flow of ghost agents adapt the appropriate 
levels of pheromone deposits to shape the future flow of material as desired. 

By the time the avatar makes its next routing choice, which is delayed by the 
physical constraints of the material flow through the system, the ghosts and the policy 
agents have adjusted the appropriate pheromones so that the avatar makes the “right” 
decision. In effect, the policy agents and the ghosts control the avatar as long as they 
can converge on a low-entropy pheromone concentration that the avatar can sample. 

5.2   Path Planning for Robotic Vehicles 

Two pressures require that path planning for robotic vehicles be an ongoing activity. 
1) The agent typically has only partial knowledge of its environment, and must adapt 
its behavior as it learns by observation. 2) The environment is dynamic: even if an 
agent has complete knowledge at one moment, a plan based on that knowledge be-
comes less useful as the conditions on which it was based change. These problems are 
particularly challenging in military applications, where both targets and threats are 
constantly appearing and disappearing. 

In the DARPA JFACC program, we approached this problem by imitating the dy-
namics that ants use in forming paths between their nests and food sources [9]. The 
ants search stochastically, but share their discoveries by depositing and sensing nest 
and food pheromone. Ants that are searching for food deposit nest pheromone while 
climbing the food pheromone gradient left by successful foragers. Ants carrying food 
deposit food pheromone while climbing the nest pheromone gradient. The initial 
pheromone trails form a random field, but quickly collapse into an optimal path as the 
ants interact with one another’s trails. 

The challenge in applying this algorithm to a robotic vehicle is that the algorithm 
depends on interactions among many ants, while a vehicle is a single entity that only 
traverses its path once. We use a polyagent to represent the vehicle (in our case, an 
aircraft) whose route needs to be computed [13, 19]. As the avatar moves through the 
battlespace, it continuously emits a swarm of ghosts, whose interactions mimic the ant 
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dynamics and continuously (re)form the path in front of the avatar. These ghosts seek 
targets and then return to the avatar. They respond to several digital pheromones:  

• RTarget is emitted by a target. 
• GNest is emitted by a ghost that has left the avatar and is seeking a target. 
• GTarget is emitted by a ghost that has found a target and is returning to the avatar. 
• RThreat is emitted by a threat (e.g., a missile battery). 

Ideally, the digital pheromones are maintained in a distributed network of unattended 
ground sensors dispersed throughout the vehicle’s environment, but they can also re-
side on a central processor, or even on multiple vehicles. In addition, we provide each 
ghost with Dist, an estimate of how far away the target is. 

In general, ghosts are attracted to RTarget pheromone and repelled from RThreat 
pheromone. In addition, before they find a target, they are attracted to GTarget 
pheromone. Once they find a target, they are attracted to GNest pheromone. A ghost’s 
movements are guided by the relative strengths of these quantities in its current cell 
and each neighboring cell in a hexagonal lattice. It computes a weighted combination 
of these factors for each adjacent cell and selects stochastically among the cells, with 
probability proportionate to the computed value. 

Each ghost explores one possible route for the vehicle. The avatar performs two 
functions in overseeing its swarm of ghosts. 

1. It integrates the information from the several ghosts in their explorations of  
alternative routes. It observes the GTarget pheromone strength in its immediate 
vicinity, and guides the robot up the GTarget gradient. GTarget pheromone is de-
posited only by ghosts that have found the target, and its strength in a given cell 
reflects the number of ghosts that traversed that cell on their way home from the 
target. So the aggregate pheromone strength estimates the likelihood that a given 
cell is on a reasonable path to the target. 

2. It modulates its ghosts’ behaviors by adjusting the weights that the ghosts use to 
combine the pheromones they sense. Initially, all ghosts used the same hand-
tuned weights, and differences in their paths were due only to the stochastic 
choices they made in selecting successive steps. When the avatar randomly var-
ied the weights around the hand-tuned values, system performance improved by 
more than 50%, because the 
ghosts explored a wider range of 
routes. We then allowed the ava-
tar to evolve the weight vector as 
the system operates, yielding an 
improvement nearly an order of 
magnitude over hand-tuned 
ghosts [18]. 

We tested this system’s ability to 
route an aircraft in simulated combat 
[13]. In one example, it found a path 
to a target through a gauntlet of 
threats (Fig. 1). A centralized route 
planner seeking an optimal path by 

 

Fig. 1. Gauntlet Routing Problem 
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integrating a loss function and climb-
ing the resulting gradient was unable 
to solve this problem without manu-
ally introducing a waypoint at the 
gauntlet’s entrance. The polyagent 
succeeded because some of the ghosts, 
moving stochastically, wandered into 
the gauntlet, found their way to the 
target, and then returned, laying 
pheromones that other ghosts could 
reinforce.  

Another experiment flew multiple 
missions through a changing land-
scape of threats and targets. The figure 
of merit was the total surviving 
strength of the Red and Blue forces. In 
two scenarios, the aircraft’s avatar 
flew a static route planned on the basis 
of complete knowledge of the location 
of threats and targets, without ghosts. The routes differed based on how closely the 
route was allowed to approach threats. A third case used ghosts, but some threats 
were invisible until they took action during the simulation. Fig. 2 compares these 
three cases. The polyagent’s ability to deal with partial but up-to-date knowledge both 
inflicted more damage on the adversary and offered higher survivability than pre-
planned scripts based on complete information.  

Route planning shows how a polyagent’s ghosts can explore alternative behaviors 
concurrently, and integrate that experience to form a single course of action. Since 
only one polyagent is active at a time, this work does not draw on the ability of 
polyagents to manage the space of possible interactions among multiple entities. 

5.3   Characterizing and Predicting Agent Behavior 

The DARPA RAID program [7] focuses on the problem of characterizing an adver-
sary in real-time and predicting its future behavior. Our contribution to this effort [15] 
uses polyagents to evolve a model of each real-world entity (a group of soldiers 
known as a fire team) and extrapolate its behavior into the future. Thus we call the 
system “the BEE” (Behavior Evolution and Extrapolation). 

The BEE process is inspired by prediction mechanism commonly used in physical 
systems. Nonlinearities in the dynamics of most realistic systems drive the exponen-
tial divergence of trajectories originating close to one another, a phenomenon popu-
larly denominated as “chaos.” As a result, while we can predict a short distance into 
the future, our vision becomes blurred as we look further. This is as true for intelli-
gence operations as it is for physical systems. 

In many applications, we can replace a single long-range prediction with a series of 
short-range ones. The difference is between driving a car in the daytime and at night. 
In the daytime, one may be able to see several miles down the road. At night, one can 
only see as far as the headlamps shine, but since the headlamps move with the car, at 

Fig. 2. Real-Time vs. Advance Planning.—
“Script” is a conservative advance route based 
on complete knowledge. “Script narrow” is a 
more aggressive advance route. “Ghost” is the 
result when the route is planned in real time 
based on partial knowledge. 
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any moment the driver has the information 
needed to make the next round of decisions.  

In physical systems, one typically de-
scribes the systems with vector differential 

equations, e.g., )(xf
dt

xd = . At each moment, 

we fit a convenient functional form for f to 
the system’s trajectory in the recent past, 
and then extrapolate this fit (Fig. 3, [5]). 
Constant repetition of this process provides 
a limited look-ahead into the future. The 
process can be applied in reverse as well, 
allowing us to project from a series of cur-
rent observations into the past to recover 
likely historical antecedents of the current 
state. This program is straightforward with a 
system described numerically. Polyagents 
apply it to agent behavior. 

Fig. 4 is an overview of the BEE process. Ghosts live on a timeline indexed by τ 
that begins in the past at the insertion horizon and runs into the future to the predic-
tion horizon. τ is offset with respect to the current time t. The timeline is divided into 
discrete “pages,” each representing a successive value of τ. The avatar inserts the 
ghosts at the insertion horizon. In our current system, the insertion horizon is at  
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Fig. 4. Behavioral Emulation and Extrapolation. Each avatar generates a stream of ghosts that 
sample the personality space of its entity. They evolve against the entity’s recent observed be-
havior, and the fittest ghosts run into the future to generate predictions. 

 

Fig. 3. Tracking a Nonlinear 
Dynamical System. a = system 
state space; b = system trajectory 
over time; c = recent measure-
ments of system state; d = short-
range prediction 
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τ - t = - 30, meaning that ghosts are inserted into a page representing the state of the 
world 30 minutes ago. At the insertion horizon, the avatar samples each ghost’s ra-
tional and emotional parameters (desires and dispositions) from distributions to ex-
plore alternative personalities of the entity it represents. The avatar is also responsible 
for estimating its entity’s goals (using a belief network) and instantiating them in the 
environment as pheromone sources that constrain and guide the ghosts’ behavior. In 
estimating its entity’s goals and deliberately modulating the distribution of ghosts, the 
avatar reasons at a higher cognitive level than do the pheromone-driven ghosts. 

Each page between the insertion horizon and τ = t (“now”) records the historical 
state of the world at its point in the past, represented as a pheromone field generated 
by the avatars (which at each page know the actual state of the entity they are model-
ing). As ghosts move from page to page, they interact with this past state, based on 
their behavioral parameters. These interactions mean that their fitness depends not 
just on their own actions, but also on the behaviors of the rest of the population, 
which is also evolving. Because τ advances faster than real time, eventually τ = t (ac-
tual time). At this point, the avatar evaluates each of its ghosts based on its location 
compared with the actual location of its corresponding real-world entity.  

The fittest ghosts have three functions.  

1. The avatar reports personality of the fittest ghost for each entity to the rest of the 
system as the likely personality of the corresponding entity. This information en-
ables us to characterize individual warriors as unusually cowardly or brave. 

2. The avatar breeds the fittest ghosts genetically and reintroduces their offspring at 
the insertion horizon to continue the fitting process. 

3. The fittest ghosts for each entity run past the avatar's present into the future. Each 
ghost that runs into the future explores a different possible future of the battle, 
analogous to how some people plan ahead by mentally simulating different ways 
that a situation might unfold. The avatar analyzes the behaviors of these different 
possible futures to produce predictions of enemy behavior and recommendations 
for friendly behavior. In the future, the pheromone field with which the ghosts in-
teract is generated not by the avatars, but by the ghosts themselves. Thus it inte-
grates the various possible futures that the system is considering, and each ghost 
is interacting with this composite view of what other entities may be doing. 

The first and third functions are analogous to the integrating function of the avatars in 
route planning, while the second is analogous to the modulation function. 

This model has proven successful both in characterizing the internal state of enti-
ties that we can only observe externally, and in predicting their future behavior. [15] 
details the results of experiments based on multiple wargames with human partici-
pants. We can detect emotional state of entities as well as a human observer, but 
faster. Our prediction of the future of the battle is also comparable with that of a  
human, and much better than a “guessing” baseline based on a random walk. 

6   Discussion 

These projects reflect several common features that deserve recognition as a new and 
useful modeling construct, and that we now articulate as a “polyagent.” 
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• Multiple agents (the ghosts) concurrently explore alternative possible behaviors of 
the domain entity being modeled. 

• The ghosts interact through a digital pheromone field that permits simultaneous 
reasoning about the multiple possible interactions among the domain entities. 

• A single, possibly more complex agent (the avatar), modulates the swarm of 
ghosts, controlling the number of ghosts, the rate at which they are introduced, and 
the settings and diversity of their behavior. In our most sophisticated cases (route 
planning and agent fitting), the avatar evolves the ghosts.  

• The avatar also integrates the behaviors of its several ghosts (either directly or by 
observing the pheromones they deposit) to produce a single higher-level report on 
the domain entity’s likely behavior. 

Our use of polyagents involves a fair amount of art, and is motivated by their success-
ful application in multiple applications. Theoretical work is needed to make the  
technique more rigorous. One challenging question is the legitimacy of merging 
pheromones of multiple ghosts representing alternative futures for agent A of one 
type into a single field that then guides the behavior of agent B of a different type. 
This process is qualitatively distinct from the merger of pheromone deposits from 
multiple agents living in the same world to form an optimized path guiding other 
agents of the same type (the heart of conventional ant optimization). The multiple-
worlds version enables B to explore concurrently its possible interactions with multi-
ple alternative realizations of A, but we need to justify this process more formally.  

The strength of a pheromone field depends, inter alia, on the frequency with which 
agents visit various locations. Thus it may be viewed as a probability field describing 
the likelihood of finding an agent of a given type at a given location. If those agents 
are ghosts representing alternative futures of an entity’s trajectory, the probability 
field may be interpreted in terms of the likelihood of different future states. Table 2 
suggests several parallels between this perspective on polyagents and quantum  
physics [3]. In the spirit of 
our earlier work applying 
metaphors from theoretical 
physics to understanding 
multi-agent systems [12, 14, 
16, 20], we will use con-
cepts from quantum me-
chanics to provide an intel-
lectual and formal model for 
engineering polyagent sys-
tems and interpreting their 
behavior. 

Like quantum wave mod-
els, polyagents explore mul-
tiple possible behaviors and 
interactions. Unlike wave 
functions, they can do so 
predictively. We can  

Table 2. Quantum Physics and Polyagents 

Quantum Physics Polyagents 
Duality between (single, 
localized) particle and 
(distributed) wave func-
tion 

Duality between (single, local-
ized) avatar and (distributed) 
swarm of ghosts 

Interactions among 
wave functions’ ampli-
tude fields model inter-
actions among particles  

Ghosts’ pheromone fields can 
be interpreted as probability 
densities that model interac-
tions of agents 

Wave function captures 
a range of possible be-
haviors 

Swarm of ghosts captures a 
range of possible behaviors 

Observation collapses 
the wave function to a 
single behavior 

Avatar interprets the aggre-
gate behavior of the ghosts 
and yields a single prediction 
of behavior 
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configure polyagents to model what will happen in the future based on current poli-
cies, then use the avatars’ summary of what will happen to guide changes to those 
policies. 

The inspiration that we draw from nonlinear dynamics in using polyagents for pre-
diction (Section 5.3) also poses a caution. The “headlamp” model of prediction is 
necessary because divergence of trajectories makes long-range predictions inaccurate. 
The further into the future one tries to look, the more noisy the picture becomes, and 
performance may actually be better using shorter-range predictions than longer-range 
ones. We call this phenomenon the “prediction horizon.” Recently, we have demon-
strated the existence of this horizon quantitatively in polyagent prediction using a 
simple predator-prey model [11]. 

7   Conclusion 

One strength of ABM’s over EBM’s is that they capture the idiosyncracies of each 
entity’s trajectory. In complex domains, this strength is also a weakness, because any 
single set of trajectories is only a sample from a large space of possible trajectories. 
Possible interactions among the agents explode combinatorially, making this space 
much too large to explore thoroughly by repeated experiments. 

Polyagents can sample multiple interactions in a single run. An avatar mediates be-
tween the real-world entity being modeled and a swarm of ghosts that sample its  
alternative possible trajectories. The avatar may employ sophisticated cognitive rea-
soning, but the ghosts are tropistic, interacting through digital pheromone fields that 
they deposit and sense in their shared environment. The avatar modulates the genera-
tion of ghosts, and interprets their aggregate behavior to estimate its entity’s likely 
behavior. 

We have applied this system to scheduling and controlling manufacturing jobs, 
planning paths for unpiloted air vehicles through a complex adversarial environment, 
and characterizing the internal state of fighting units from observations of their out-
ward behavior, and then projecting their likely behavior into the future to form predic-
tions. Empirically, the polyagent functions well, but invites theoretical work on the 
interpretation of multiple ghosts interacting with a pheromone field that represents 
multiple alternative realizations of other entities. Several parallels with quantum phys-
ics suggest the latter discipline may be a guide in developing a more formal model. 

Acknowledgements 

This material is based on work supported by the Defense Advanced Research Projects 
Agency (DARPA) under Contract Nos. F3062-99-C-0202 and NBCHC040153. Any 
opinions, findings and conclusions or recommendations expressed in this material are 
those of the author(s) and do not necessarily reflect the views of the DARPA or the 
Department of Interior-National Business Center (DOI-NBC). Distribution Statement 
“A” (Approved for Public Release, Distribution Unlimited). 



140 H.V.D. Parunak and S. Brueckner 

References 

1. Brueckner, S.: Return from the Ant: Synthetic Ecosystems for Manufacturing Control. 
Dr.rer.nat. Thesis at Humboldt University Berlin, Department of Computer Science 
(2000),  

  http://dochost.rz.hu-berlin.de/dissertationen/brueckner-sven-2000-06-21/   
PDF/Brueckner.pdf 

2. Dorigo, M., Stuetzle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA (2004) 
3. Feynman, R., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New 

York (1965) 
4. Jacob, C.: Illustrating Evolutionary Computation With Mathematica. Morgan Kaufmann, 

San Francisco (2001) 
5. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, 

Cambridge, UK (1997) 
6. Kijima, K.: Why Stratification of Networks Emerges in Innovative Society: Intelligent 

Poly-Agent Systems Approach. Computational and Mathematical Organization The-
ory 7(1), 45–62 (2001) 

7. Kott, A.: Real-Time Adversarial Intelligence & Decision Making (RAID) (2004),  
  http://dtsn.darpa.mil/ixo/programdetail.asp?progid=57 

8. Lambert, T.J., Epelman III, M.A., Smith, R.L.: A Fictitious Play Approach to Large-Scale 
Optimization. Operations Research 53(3) (2005) 

9. Parunak, H.V.D.: Go to the Ant: Engineering Principles from Natural Agent Systems. An-
nals of Operations Research 75, 69–101 (1997),  

  http://www.newvectors.net/staff/parunakv/gotoant.pdf 
10. Parunak, H.V.D.: Making Swarming Happen. In: Proceedings of Swarming and Network-

Enabled C4ISR, Tysons Corner, VA, ASD C3I (2003), 
  http://www.newvectors.net/staff/parunakv/MSH03.pdf 

11. Parunak, H.V.D., Belding, T.C., Brueckner, S.: Prediction Horizons in Polyagent Models. 
In: Proceedings of Sixth International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS07), Honolulu, HI, pp. 930–932 (2007),  

  http://www.newvectors.net/staff/parunakv/AAMAS07PH.pdf 
12. Parunak, H.V.D., Brueckner, S.: Entropy and Self-Organization in Multi-Agent Systems. 

In: Proceedings of The Fifth International Conference on Autonomous Agents (Agents 
2001), Montreal, Canada, pp. 124–130. ACM Press, New York (2001),  

  http://www.newvectors.net/staff/parunakv/agents01ent.pdf 
13. Parunak, H.V.D., Brueckner, S., Sauter, J.: Digital Pheromones for Coordination of Un-

manned Vehicles. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.) E4MAS 2004. LNCS 
(LNAI), vol. 3374, pp. 246–263. Springer, Heidelberg (2005),  

  http://www.newvectors.net/staff/parunakv/E4MAS04_UAVCoordination.pdf 
14. Parunak, H.V.D., Brueckner, S., Savit, R.: Universality in Multi-Agent Systems. In: 

Kudenko, D., Kazakov, D., Alonso, E. (eds.) Adaptive Agents and Multi-Agent Systems 
II. LNCS (LNAI), vol. 3394, pp. 930–937. Springer, Heidelberg (2005), 

  http://www.newvectors.net/staff/parunakv/AAMAS04Universality.pdf 
15. Parunak, H.V.D., Brueckner, S.A.: Extrapolation of the Opponent’s Past Behaviors. In: 

Kott, A., McEneany, W. (eds.) Adversarial Reasoning: Computational Approaches to 
Reading the Opponent’s Mind, pp. 49–76. Chapman and Hall/CRC Press, Boca Raton, FL 
(2006) 

 
 



 Concurrent Modeling of Alternative Worlds with Polyagents 141 

16. Parunak, H.V.D., Brueckner, S.A., Sauter, J.A., Matthews, R.: Global Convergence of Lo-
cal Agent Behaviors. In: Proceedings of Fourth International Joint Conference on 
Autonomous Agents and Multi-Agent Systems (AAMAS05), Utrecht, The Netherlands, 
pp. 305–312. ACM Press, New York (2005),  

  http://www.newvectors.net/staff/parunakv/AAMAS05Converge.pdf 
17. Parunak, H.V.D., Savit, R., Riolo, R.L.: Agent-Based Modeling vs. Equation-Based Mod-

eling: A Case Study and Users’ Guide. In: Sichman, J.S., Conte, R., Gilbert, N. (eds.) 
Multi-Agent Systems and Agent-Based Simulation. LNCS (LNAI), vol. 1534, pp. 10–25. 
Springer, Heidelberg (1998), http://www.newvectors.net/staff/parunakv/mabs98.pdf 

18. Sauter, J.A., Matthews, R., Parunak, H.V.D., Brueckner, S.: Evolving Adaptive Phero-
mone Path Planning Mechanisms. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) Adap-
tive Agents and Multi-Agent Systems. LNCS (LNAI), vol. 2636, pp. 434–440. Springer, 
Heidelberg (2003), http://www.newvectors.net/staff/parunakv/AAMAS02Evolution.pdf 

19. Sauter, J.A., Matthews, R., Parunak, H.V.D., Brueckner, S.A.: Performance of Digital 
Pheromones for Swarming Vehicle Control. In: Proceedings of Fourth International Joint 
Conference on Autonomous Agents and Multi-Agent Systems, Utrecht, Netherlands, pp. 
903–910. ACM Press, New York (2005),  

  http://www.newvectors.net/staff/parunakv/AAMAS05SwarmingDemo.pdf 
20. Savit, R., Brueckner, S.A., Parunak, H.V.D., Sauter, J.: Phase Structure of Resource Allo-

cation Games. Physics Letters A 311, 359–364 (2002), 
  http://arxiv.org/pdf/nlin.AO/0302053 

21. Shnerb, N.M., Louzoun, Y., Bettelheim, E., Solomon, S.: The importance of being dis-
crete: Life always wins on the surface. In: Proc. Natl. Acad. Sci. USA 97(19), 10322–
10324 (2000), http://www.pnas.org/cgi/reprint/97/19/10322 

22. Sterman, J.: Business Dynamics. McGraw-Hill, New York (2000) 
23. Wittig, T.: ARCHON: An Architecture for Multi-agent Systems. Ellis Horwood, New 

York (1992) 
 



Integrating Learning and Inference in

Multi-agent Systems Using Cognitive Context

Bruce Edmonds and Emma Norling

Centre for Policy Modelling
Manchester Metropolitan University

bruce@edmonds.name, norling@acm.org

Abstract. Both learning and reasoning are important aspects of intelli-
gence. However they are rarely integrated within a single agent. Here it is
suggested that imprecise learning and crisp reasoning may be coherently
combined via the cognitive context. The identification of the current con-
text is done using an imprecise learning mechanism, whilst the contents
of a context are crisp models that may be usefully reasoned about. This
also helps deal with situations of logical under- and over-determination
because the scope of the context can be adjusted to include more or less
knowledge into the reasoning process. An example model is exhibited
where an agent learns and acts in an artificial stock market.

1 About Context

Both learning and reasoning are far more feasible when their scope is restricted
to a particular context because this means that only the relevant knowledge
needs to be dealt with. However if any significant degree of generality is to be
obtained in this manner [1] then an intelligence must be able to appropriately
change this focus as the external context (the context we inhabit in [2]) changes.
In other words there needs to be some internal correlate of the external context
that allows an intelligence to identify which set of beliefs apply. We will call this
internal correlate the cognitive context (this is the “internal” approach identified
in [3]). There are (at least) two tasks necessary for this:

– identifying the appropriate cognitive context from perceptions, and
– accessing the appropriate beliefs given the identified cognitive context.

The success of this strategy of assessing the relevance of knowledge via identi-
fiable ‘contexts’ depends upon whether the environment is usefully divided up
in such a manner. This is a contingent matter – one can imagine (or devise)
environments where this is so and others where it is not. The “pragmatic roots”
of context, i.e. why context works, depends upon the underlying pattern of com-
monalities that occur in an environment or problem domain [4]. A cognitive
context indicates the boundaries of what might be relevant in any situation.

Context serves not only to make it feasible to deal with our knowledge at
any one time but also, at a more fundamental level, to make our modeling of
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the world at all feasible. The efficacy of our limited learning and inference in
dealing with our complex world is dependent on the presumption that many of
the possible causes or effects of important events remain relatively constant [5].
Otherwise we would need to include all possible causes and affects in our models
and decision making processes, which is clearly infeasible. It is the existence of
relative constancy of many factors in particular situations that makes our limited
modeling ability useful: we can learn a simple model in one circumstance and
successfully use it in another circumstance that is sufficiently similar to the first
(i.e. in the same ‘context’).

It is the possibility of the transference of knowledge via fairly simple models
from the circumstances where they are learnt to the circumstances in which they
are applied that allows the emergence of context. The utility of ‘context’ comes
from the possibility of such transference. If this were not feasible then ‘context’,
as such, would not arise. For such a transference to be possible a number of
conditions need to be met, namely that:

– some of the possible factors relevant to important events are separable in a
practical way,

– a useful distinction can be made between those factors that can be cat-
egorized as foreground features and the others (the constant, background
features),

– similar background factors are capable of being reliably recognized later on
as the same ‘context’,

– the world is regular enough for such models to be learnable,
– the world is regular enough for such learnt models to be useful where such

a context can be recognized.

While this transference of learnt models to applicable situations is the basic
process, observers and analysts of this process might identify some of these
combinations of features that allow recognition and abstract them as ‘a context’.
Note that it is not necessarily possible that such an observer will be able to do
this as the underlying recognition mechanism may be obscure, too complex or
difficult to analyze into definable cases.

Such a strategy answers those of the ‘frame problem’ [6]. Firstly, although
the frame problem may be unsolvable in general it is learnable in particular
contingent cases. Secondly, the identification of appropriate contexts are not
completely accessible to reasoning or crisp definition – rather it is an unreliable,
information-rich, and imprecise process. Thus knowing B in context A, is not
translatable into statements like A → B, because the A is not a reified entity
that can be reasoned about.

The power of context seems to come from this combination of ‘fuzzy,’ fluid
context identity and crisp, relatively simple context ‘contents’. Thus context
straddles the fields of machine learning (ML) and knowledge representation and
reasoning (KRR). ML seems to have developed appropriate methods for com-
plex and uncertain pattern recognition suitable for the identification of context.
KRR has developed techniques for the manipulation of crisp formal expressions.
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Context (as conceived here) allows both to be used for different functions in an
coherent way.

2 The Research Context

In 1971, in his ACM Turing Award lecture, John McCarthy suggested that the
explicit representation and manipulation of context might be a solution to the
effective lack of generality in many AI systems (these ideas were later developed
and written up in [1]). Since then context and context-like ideas have been inves-
tigated in both the KRR and ML communities, culminating in several workshops
and a series of international conferences entirely devoted to the subject. Below
work in these areas is briefly summarized in order to set the stage for the work
that is reported here.

2.1 Context in Reasoning

McCarthy’s idea was to reify the context to a set of terms, i, and introduce
an operator, ist, which basically asserts that a statement, p, holds in a context
labeled by i. Thus:

c : ist(i, p)

reads “p is true in context i” which is itself asserted in an outer context c. ist
is similar to a modal operator but the context labels are terms of the language.
Reasoning within a single context operates in a familiar way, thus we have:

∀i(ist(i, p) ∧ ist(i, p → q) → ist(i, q))

In addition one needs a series of ‘lifting’ axioms, which specify the relation
between truth in the different contexts. For example if i ≥ j means that “i is
more general than context j”, then we can lift a fact to a supercontext using:

∀i∀j(i ≥ j) ∧ (ist(i, p) ∧ ¬ab(i, j, p) → ist(j, p))

where ab is an abnormality predicate for lifting to supercontexts. This framework
is developed in [7]. There are a whole series of formal systems which are closely
related to the above structure, including, notably: the situations of Barwise
and Perry [2], Gabbay’s fibered semantics [8], and the local semantics of the
Mechanized Reasoning Group at Trento [9].

One of the problems with this sort of approach is that it is likely that trying to
apply generic reasoning methods to context-dependent propositions and models,
will be either inefficient or inadequate [10]. The generic approach forces a choice
of the appropriate level of detail to be included, so that it is likely that either
much information that is irrelevant to the appropriate context will be included
(making the deduction less efficient) or much useful information that is specific
to the relevant context may be omitted (and hence some deductions will not be
possible).

Another problem is that, in practice, this type of approach requires a huge
amount of information to be explicitly specified: contexts, contents of each con-
text and bridging rules.
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2.2 Context in Learning

The use of context in machine learning can be broadly categorized by goal,
namely: to maintain learning when there is a hidden/unexpected change in con-
text; to apply learning gained in one context to different contexts; and to utilize
already known information about contexts to improve learning. There are only a
few papers that touch on the problem of learning the appropriate contexts them-
selves. Included in those that do, Widmer [11] applies a meta-learning process
to a basic incremental learning neural net; the meta-algorithm adjusts the win-
dow over which the basic learning process works. Here it is an assumption that
contexts are contiguous in time and so a time-window is a sufficient representa-
tion of context. Harries et al. [12] employ a batch learner as a meta-algorithm
to identify stable contexts and their concepts; this makes the assumption that
the contexts are contiguous in the ‘environmental variables’ and the technique
can only be done off-line. Aha describes an incremental instance-based learning
technique which uses a clustering algorithm to determine the weight of features
and hence implicitly adjust context [13].

Contextual knowledge has been used to augment existing machine learning
techniques in a number of instances. Turney [14] used explicit identification of
what the contextual factors would be, but others have used implicit features
(e.g. Aha [13]). Turney [15] discusses the problem of the effects of context on
machine learning and surveys some heuristics used to mitigate these effects [16].

2.3 Context in Human Cognition

The use of context is a pervasive heuristic in human cognition. It appears that we
use context in almost every area of our thinking and action, including: language
understanding; memory; concepts and categorization; affect and social cognition
and (probably) problem solving and reasoning [17]. In the past some researchers
perceived the context-dependency of human thought purely as a disadvantage
or side-effect, but now it is becoming increasingly clear that it is an essential
tool for enabling effective learning, reasoning and communication in a complex
world. We speculate that much of the power of human thought comes from an
ability to rapidly switch between different cognitive contexts, whilst only doing
relatively simple inference within these (with the exception of problem solving
or fault-diagnosis, which use more sophisticated inference).

It has been recognized for a while that the external (and linguistic) context
plays a role in the understanding of natural language. However it is only re-
cently that the importance of context in communication has been appreciated.
The external context is not merely a resource for understanding utterances that
is accessed when all other mechanisms fail; a way of sorting out otherwise am-
biguous sentences. Rather it is one of the primary mechanisms. We will not
discuss the use of context in language more as it is a huge and controversial area
in which we are not experts.

Although human cognition is not a necessary starting point for motivating the
design of an intelligence, it is a fruitful one, especially when looking for solutions
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that will scale up to cope with problems of real world complexity. What the
human case shows is that it does appear that context is a useful heuristic in at
least some real-world cases.

3 Combining Context-Dependent Learning and
Reasoning

Restricting both reasoning and learning to an appropriate context makes both
more feasible. However, as with any other technique, there are a number of
difficulties with applying a context-dependent approach to reasoning. Firstly:

– Explicitly specifying a set of knowledge appropriate for a whole set of po-
tential contexts is both time-consuming and labor-intensive.

Thus with a few honorable exceptions (e.g. CYC [18]), most systems of context-
dependent learning or reasoning are only tried out with a few contexts. A possi-
ble answer to this (and the one employed here) is to learn the contexts and the
context-dependent knowledge. The second is easier than the first; for, as indi-
cated above in Sect. 2.2, there are a number of techniques to learn the knowledge
associated with contexts.

The learning of the contexts themselves (i.e. how to recognize when a set of
beliefs learnt in a previous situation are again applicable) requires a sort of meta-
learning. As documented above, there are such techniques in existence. However
most of these require reasonably strong assumptions about the particular na-
ture of the contexts concerned. For example [19] learns context for plans within
a BDI framework, but this is limited to the strict definition of plan context,
and is further constrained by the knowledge elicitation process. An exception
is [20] which describes how contexts can be co-learnt along with the knowledge
associated with those contexts. This applies an evolutionary learning algorithm
where the knowledge is distributed across a space, where different positions in
that space are associated with different sets of perceptions or different parts of a
problem. This can be clearly understood via the following ecological analogy. If
the space can be thought of as a landscape where different parts of the landscape
have different properties, and different plants require different properties (some
might thrive in marshy land, others sunny and dry, etc.). The set of solutions
can be seen as varieties of a plant. The different varieties propagate and cross
with others in each locality so that, eventually, each variety adapts and, at the
same time, spreads across the areas that it is best adapted for. The patches
where different sets of varieties thrive define the different ecological niches –
corresponding to the different contexts via this analogy.

The ability to learn context allows us to progress beyond the ‘loose’ loop of:

repeat
learn/update beliefs
deduce intentions, plans and actions

until finished
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to a more integrated loop of:

repeat
repeat

recognise/learn/choose context
induce/adapt/update beliefs in that context
deduce predictions/conclusions in that context

until predictions are consistent
and actions/plans can be determined

plan & act
until finished.

Such a co-development of cognitive contexts alongside their ‘contents’ gives
rise to a new problem when the knowledge in these contexts is used to infer
predictions and decisions. Thus a second problem is this:

– When some of the contents turn out to be wrong, how can one tell when it
is the context that is wrong and when it is the contents that are wrong?

There is no universal answer to such a question – it will, in general, depend upon
the nature of the domain and hence the appropriate contexts in that domain.
However there is a heuristic, as follows: if only a few of the elements of knowledge
associated with a context are disconfirmed, it is likely that these are wrong
(update the set); if many of the elements are disconfirmed then it is likely that
the context is wrong (change it and learn from this).

Thus in the proposed architecture there are four modules: (1) the context
identification system; (2) the context-dependent memory; (3) the local learn-
ing/induction algorithm; and (4) the inference system, as shown in Fig 1.

The context identification system (CIS) takes a rich range of inputs and learns
in a flexible and imprecise way an indication of the context (which it outputs to
the memory). The CIS learns as the result of negative feedback when too much
of the knowledge in the cognitive context is simultaneously disconfirmed.

Fig. 1. How the context-identification system (CIS), the context-dependent memory
(CDM), the local learning algorithm (LL), and inference system (IS) work together
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The context-dependent memory (CDM) takes the indication given by the CIS
and identifies all those memory items stored within that context. It evaluates the
(current) truth of these and if too many are false it returns negative feedback to
the CIS which will identify another context. If a sufficient number of indicated
contents are true, then the local learning updates the items within that context.
Those items that are (currently) true are passed to the inference system.

The local learning algorithm (LL) performs a local update of the knowledge
in the memory. It may include the propagation of successful items towards the
focus, but may also include the deletion/correction of items that were false and
the possible insertion of new induced/learned.

Finally the planning/inference system (IS) tries to deduce some decisions as
to the actions or plans to execute. It could do this in a number of ways, but
this could include trying to predict the future states of the world given possible
actions and comparing the predictions using its goals.

Two common problems with inference systems that attempt to deduce pre-
dictions or decisions from an arbitrary collection of knowledge are under- and
over-determination. Under-determination is when there is not enough informa-
tion to come to a conclusion or decision that needs to be reached. In other words
there may be a key proposition, α, such that neither α nor ¬α can be inferred.
Over-determination is when there is contradictory information in the knowledge,
i.e. when there is an α such that both α and ¬α can be deduced.

This architecture allows a useful response in these two situations. In the case
of under-determination the context can be expanded so that more knowledge
can be made available to the IS so that it may make more inferences. In the case
of over-determination the context can be reduced so that some of the knowledge
can be excluded, the knowledge that is peripheral to the context.

Many non-monotonic logics can be seen as attempts to solve the above prob-
lems in a generic way, i.e. without reference to any contingent properties ob-
tained from the particular contexts they are applied in. So, for example, some
use ‘entrenchment’ to determine which extra information can be employed (e.g.
oldest information is more reliable [21]), and others allow a variety of default
information to be used (e.g. using extra negative knowledge as long as it is con-
sistent [22]). These may work well on occasion, but they cannot exploit any of
the relevance relations specific to the particular knowledge and context.

4 A Demonstration Model

To show these ideas working in practice a demonstration model is briefly exhib-
ited. This deploys particular algorithms to the processes of context identification,
local learning/update and inference. It must be emphasised that the particular
algorithms we used are somewhat arbitrary – there are probably far better ones
available. The purpose of this model is to be a demonstrator model, and the sys-
tem described here shows how these processes can be usefully integrated using
context dependency rather than representing an ideal.
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4.1 The Environment

To support contextual learning, the chosen environment needs to be sufficiently
rich (1) to be worth learning contextual information about, and (2) that an entity
may predict and reason about many different aspects at once. The heuristic
must be able to distinguish between an incorrect choice of context (when many
beliefs/predictions are proven to be wrong) and incorrect beliefs/predictions
(when only a few are wrong).

The environment selected to meet these requirements was a small artificial
stock market [23], where the past actions of other traders, the prices, volumes,
money etc. are observable. This is a constrained but dynamic setting, where any
actions have significant effects on the environment because the other traders
will then adapt their strategies. The prices follow a pattern typical of many
markets – there are booms and busts; much apparent noise; only a weak, long-
term correlation of prices with dividends; and a long-term exponential trend in
prices.

All traders are initialised with a certain amount of cash and a small random
level of each stock. There is a ‘running-in’ period where all actions are random,
to provide for the initial conditions for learning. If the demand was greater than
the supply then the price goes up by the set increment, otherwise it goes down
by the same incremement.

GP Traders. The context trader competes within this environment with other
traders having identical abilities in terms of perception and action but a much
simpler (non-context-dependent) GP algorithm. For each of these traders, in
each cycle its population of strategies is evolved once using a fairly standard GP
algorithm with the fitness determined by an evaluation of the increase in total
assets that would have resulted if that strategy was used over a certain number
of time periods. The best is used to determine the current strategy which is then
moderated for possibility (e.g. it may want to buy 2000 units of a certain stock
but only have enough cash for 5 units!).

Each strategy is composed of a set of typed trees which, when evaluated,
yields a number. There is one tree for each stock, plus one stats tree which can
be used to learn a useful result that can be used in the other trees. Each GP
trader agent has a small population of these strategies.

4.2 General Structure of Context Agent

The general structure is illustrated in Figure 1. Key signals into/out from/
between modules are as follows:

– A vector of 69 different perceptions are fed into both the CIS and LL;
– The (guess at the) current appropriate context is sent from CIS to CDM as

a pair of a coordinate and a radius;
– If the context is wrong a ‘bad context’ signal is sent from CMD to CIS
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– If the set of expressions passes basic tests, the set of expressions within the
currently identified context is sent to the IS;

– If the set of expressions is inconsistent a signal of ‘over-determination’ is sent
to the CIS, if there is insufficient information to deduce a decision then a
signal of ‘under-determination’ is sent to the CIS;

– The IS outputs decisions in terms of buying and selling stocks;
– The LL acts upon the contents of the CDM using present and past informa-

tion about the environment to do so.

4.3 The Context Identification System (CIS)

The CIS is implemented using a simple table with four entries: a vector of possible
perceptions; a weight; a radius; and an output coordinate of the CDM. The
distance between the vector of input perceptions and the first column entries
multiplied by the weight are calculated and the row with the minimum value
‘fired’. The radius and coordinate are output to the CDM, as is illustrated in
figure 2. In the case of negative feedback, the fired weight is increased. Thus the
table forms a simple self-organized critical system [24].

Fig. 2. The CIS implemented as a simple table using the closest match moderated by
the weights. The corresponding CDM coordinate and radius is output.

The table was randomly initialised; the input vector in the first column is of
size 69 initialised with random values in the [-10, 110] range; the CDM coordi-
nates being in the [0,100] range; the initial weights were all 1; the initial radii
were all 20.

Changes occur to the CIS table as follows. If the set of knowledge output
from the CDM turns out to be inconsistent or inadequate, the IS signals this to
the CIS and the radius in the fired row is reduced or increased respectively. If
the context was wrongly identified then the corresponding weight is increased to
reduce the times this is fired.
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4.4 The Context-Dependent Memory (CDM)

The CDM is another table, associating items of knowledge expressed as strongly
typed trees, with coordinates. When given a focus coordinate and radius from
the CIS it identifies those items within the radius of the focus coordinate. This
CDM thus has similarities to the way that SDM memory works [25]. It evaluates
these knowledge items against the current state of the world and the proportion
of correct items calculated. If this value is low, negative feedback is provided to
the CIS and control is passed back to the CIS, otherwise the LL module acts on
the identified knowledge set and (in parallel) the set is passed to the IS.

Knowledge items are represented as typed trees using a fairly rich language of
nodes and terminals. These include nodes for logical operators (and, or, implies,
not); arithmetic operators (plus, minus, times, divide); comparisons (greater
than, less than); temporal operators (last, variable lag) and others (e.g. ran-
domIntegerUpTo). Terminals include: Boolean constants (T, F); a selection of
numeric constants; prices of stocks; actions of other traders in each stock; cash
owned; stocks owned; trading volumes; stock index; whether the price of a stock
has gone up or down; etc.

Thus an example expression is:

[IMPLIES
[greaterThan

[times
[doneByLast [’gPTrader-4’] [’stock-3’]]
[presentStockOf [’stock-2’]]

]
[talkResult [’stock-2’]]

]
[lastBoolean

[priceDownOf [’stock-1’]]
]

]

4.5 The Local Learning Algorithm (LL)

The LL is based on Strongly-Typed Genetic Programming [26]. The LL algo-
rithm samples the contents of the CDM and applies an evolutionary algorithm
to it. Each cycle the LL does the following:

For each expression in the current context currently true
If randomNumber < propogationProb

Copy expression 25% towards the focus
Mutating it with probability mutationProb

If anotherRandomNumber < crossoverProb
Randomly choose anotherExpression in context
Cross expression and anotherExpression and store

Store result shifted 25% towards the focus
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From the average position of parents
Next expression
For each expression in the current context currently false

If randomNumber < cullProb
Delete expression

Next expression

If the total population is greater than a set maximum, then those expressions
that have been accessed least recently in the whole memory are deleted to bring
the population down to the maximum.

4.6 The Inference System (IS)

The IS does the following: it takes the set of expressions in the current context
that are currently true; it simplifies the expressions using the current state of the
perceptions (substituting the known values for sub-expressions and doing some
arithmetic and logical simplification); then it applies a set of inference rules to
the resulting set for a maximum of 10 sub-cycles (or until no new inferences
can be made); the result of this (in terms of inferences about the next price
movements) determines the actions or signals that result.

Inference rules used are the following: A∧B |= A; A∧B |= B; A, A → B |= B;
¬B, A → B |= ¬A; ¬¬A ⇒ A; ¬(priceUp) ⇒ priceDown, ¬(priceDown) ⇒
priceUp.

The results are evaluated as follows: if neither priceUp nor priceDown are
inferred for the next time period for any stock then no action is taken and a signal
sent that this context is under-determined; if for a stock priceUp is inferred but
not priceDown for that stock the agent buys; if for a stock priceDown is inferred
but not priceUp for that stock the agent sells; and if both priceUp and priceDown
are inferred the ‘over-determined’ signal is sent.

4.7 Preliminary Results

The agent that used the architecture did not initially do as well as the GP
learners it was pitted against. The latter learn in a quick-and-dirty way evolving
strategies that would have performed best over the last 5 time periods only.
The context agent has a lot more learning to do than them before it becomes
effective. As you can see from Fig. 3 the context trader does worse up to time
400 (as it learns) but then catches up by roughly 40 orders of magnitude (that
is, the rate of increase in asset value is higher for the context trader beyond time
400).

However we can show that this agent does learn and reason in a context-
dependent way. Figure 4 shows that the agent does make trades and hence
infers enough to make predictions about the movements of prices.

The last graph (Fig. 5) shows the rate of bad context identification over time
– this drops to zero over the time.
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Fig. 3. The logarithm of the total assets of traders (context is lower line) against time

Fig. 4. The logarithm of the values of trades made by the context agent over time

Fig. 5. The number of bad contexts identified over the last 50 time periods

Clearly these results are only from a single run and thus do not prove anything.
However they are not to prove the technique but merely show its feasibility. In
the future we hope to be able to greatly improve these results.

5 Conclusion

We have shown how context can be used to integrate learning and reasoning in
a coherent manner, improving the tractability of both whilst retaining most of
the advantages of both. As an additional benefit it provides sensible responses to
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the problems of under- and over-determination in knowledge. Knowledge update
can be done in a specific manner reflecting the properties and relevance of the
knowledge items rather than relying on generic heuristics.

This is but one way in which learning and reasoning can interact. Due to
the divide between the ML and KRR communities, there are too few studies
of the possible interactions between learning and reasoning processes. These
interactions are important because they can result in outcomes that are not
obvious from a simple knowledge of the components. This study goes a little
way in this direction.
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Abstract. This paper addresses agent modeling in multiagent-based
simulation (MABS) to explore agents who can reproduce human-like
behaviors in the sequential bargaining game, which is more difficult to be
reproduced than in the ultimate game (i.e., one time bargaining game).
For this purpose, we focus on the Roth’s learning agents who can re-
produce human-like behaviors in several simple examples including the
ultimate game, and compare simulation results of Roth’s learning agents
and Q-learning agents in the sequential bargaining game. Intensive sim-
ulations have revealed the following implications: (1) Roth’s basic and
three parameter reinforcement learning agents with any type of three
action selections (i.e., ε-greed, roulette, and Boltzmann distribution se-
lections) can neither learn consistent behaviors nor acquire sequential ne-
gotiation in sequential bargaining game; and (2) Q-learning agents with
any type of three action selections, on the other hand, can learn con-
sistent behaviors and acquire sequential negotiation in the same game.
However, Q-learning agents cannot reproduce the decreasing trend found
in subject experiments.

Keywords: agent-based simulation, agent modeling, sequential bar-
gaining game, human-like behaviors, reinforcement learning.

1 Introduction

A reproduction of human-like behaviors by computer simulations is an important
issue in multiagent-based simulation (MABS) [1,9] to validate computational
models and simulation results. For this purpose, several researches attempt to
reproduce simulation results that are close to subject experiment results. For
example, Roth and Erev compared simulation results of simple reinforcement
learning agents with results of subject experiments in several examples [4,16].
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Their intensive comparisons revealed that (1) computer simulation using simple
reinforcement learning agents can more explain the result of subject experiments
than economic theory; and (2) the former approach has more great potential of
predicting results than the latter approach. In related work, Ogawa and their
colleagues compared simulation results with subject experiment results in mo-
nopolistic intermediary games which has more complexity of the real world than
examples addressed in Roth and Erev’s works [6,13].1 This research also revealed
that simple reinforcement learning agents can reproduce the subject experiment
results more precisely than the best response agents and random agents. These
researches show that reinforcement learning agents have a high reproduction
capability of human-like behaviors.

However, such capability was only investigated in a case where a payoff is
determined and given to agents in each negotiation but not in a case where a
payoff is determined after a number of negotiations. Considering the fact that se-
quential negotiations are naturally conducted in general human society instead
of one negotiation (i.e., it is a rare case where a negotiation process ends by
only one negotiation), it is important to investigate the reproduction capabil-
ity of reinforcement learning agents in sequential negotiations toward pursu-
ing an acquisition of real human behaviors by computer simulations. For this
purpose, we start by employing the sequential bargaining game as one of the
typical negotiations and compare simulation results of reinforcement learning
agents with results of subject experiments. We focus on the bargaining game
because the bargaining is not only a fundamental negotiation but also appeared
in several levels (i.e., individual, company, and country levels) and therefore
agents that can reproduce such human-like behaviors have a potential of provid-
ing new important aspects of negotiations. As a representative of such agents,
we employ Roth’s2 reinforcement learning agents from social science and Q-
learning agents [22] in the context of reinforcement learning [21] from computer
science, and investigate their reproduction capability by applying either of three
types of action selections (described in Section 3) to both Roth’s and Q-learning
agents.

This paper is organized as follows. Section 2 explains the bargaining game
as an important example for sequential negotiations and an implementation of
agents is described in Section 3. Section 4 presents computer simulations and
Section 5 discusses the reproduction capability of human-like behaviors. Finally,
our conclusions are given in Section 6.

2 Bargaining Game

As described in the previous section, we focus on bargaining theory [10,11] in
game theory [14] and employ a bargaining game [17] where two or more players
try to reach a mutually beneficial agreement through negotiations. This game has

1 They conduced subject experiments in the framework of Spulber’s model [20].
2 Hereafter, we employ the name Roth as a representative of both Roth and Erev.
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been proposed for investigating when and what kinds of offers of an individual
player can be accepted by the other players.

To understand the bargaining game, let us give an example from Rubinstein’s
work [17] which illustrated a typical situation using the following scenario: two
players, P1 and P2, have to reach an agreement on the partition of a “pie”. For
this purpose, they alternate offers describing possible divisions of the pie, such
as “P1 receives x and P2 receives 1 − x at time t”, where x is any value in the
interval [0, 1]. When a player receives an offer, the player decides whether to
accept it or not. If the player accepts the offer, the negotiation process ends, and
each player receives the share of the pie determined by the concluded contract.
If the player decides not to accept the offer, on the other hand, the player
makes a counter-offer, and all of the above steps are repeated until a solution
is reached or the process is aborted for some external reason (e.g., the number
of negotiation processes is finite). If the negotiation process is aborted, neither
player can receive any share of the pie.

Here, we consider the finite-horizon situation, where the maximum number
of steps (MAX STEP) in the game is fixed and all players know this information
as common knowledge. In the case where MAX STEP = 1 (also known as the
ultimatum game), player P1 makes the only offer and P2 can accept or refuse
it. If P2 refuses the offer, both players receive nothing. Since a rational player
is based on the notion of “anything is better than nothing”, a rational P1 tends
to keep most of the pie to herself by offering only a minimum share to P2. Since
there are no further steps to be played in the game, a rational P2 inevitably
accepts the tiny offer.

By applying a backward induction reasoning to the situation above, it is
possible to perform a simulation for MAX STEP > 1. For the same reason seen in
the ultimatum game, the player who can make the last offer is better positioned
to receive the larger share by offering a minimum offer [19]. This is because both
players know the maximum number of steps in the game as common knowledge,
and therefore the player who can make the last offer can acquire a larger share
with the same behavior of the ultimatum game at the last negotiation. From
this feature of the game, the last offer is granted to the player who does not
make the first offer if MAX STEP is even, since each player is allowed to make at
most MAX STEP/2 offers. On the other hand, the last offer is granted to the same
player who makes the first offer if MAX STEP is odd. The main concern of the
sequential negotiations is to investigate whether players continue the negotiation
to maximize their share.

After this section, we use the terms “payoff” and “agent” instead of the terms
“share” and “player” for their more general meanings in the bargaining game.

3 Modeling Agents

This section implements reinforcement learning agents in the framework of the
sequential bargaining game as follows.
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Fig. 1. Reinforcement learning agents

3.1 Agent Architecture

• Memory

As shown in Figure 1, memory stores a fixed number of matrices of state (which
represents the start or the offered value from the opponent agent) and action
(which represents the acceptance of the offered value or the counter-offer value).
In particular, the MAX STEP/2+1 number of matrices are prepared in each agent
and used in turn at each negotiation to decide to accept an offer or make a
counter-offer (see an example presented later in this section). In Figure 1, both
agents have n+1 number of matrices. In this model, agents independently learn
and acquire different worths3of the state and action pair, called Q-values, in order
to acquire a large payoff. Q-value, represented by Q(s, a), indicates an expected
reward (i.e., the payoff in the bargaining game) that an agent will acquire when
performing the action a in the situation s. Note that (1) both state and action
in this model are represented by the discrete values in a 10 unit (i.e., 10, 20, · · ·,
90); and (2) in addition to these 10–90 values, the matrix has a column labelled
(S) and a row labelled (A), which are used to indicate the start, and accept an
offer, respectively.
3 In the context of reinforcement learning, worth is called “value”. We select the term

“worth” instead of “value” because the term “value” is used as a numerical number
represented in the state and action.
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• Mechanism

A learning mechanism (i.e., Roth’s learning mechanism and Q-learning) updates
the worth of pairs of state and action by the following equations (1), (2), and
(3) respectively. In these equations, Q(s, a), Q(s′, a′), r, A(s′), α(0 < α ≤ 1),
γ(0 ≤ γ ≤ 1), λ, and φ indicate the worth of selecting the action (a) at state (s),
the worth of selecting 1 step next action (a′) at 1 step next state (s′) of the same
agent, the reward corresponding to the acquired payoff, a set of possible actions
at 1 step next state (s′), the learning rate, the discount rate, the experimentation
parameter, and the forgetting parameter, respectively.

- Roth’s basic RL4

Q(s, a) = Q(s, a) + r (1)

- Roth’s three parameter RL5

Q(s, a) = (1 − φ)Q(s, a) + r(1 − λ)
Q(s, a ± 1) = (1 − φ)Q(s, a) + r(λ/2)

Other Q(s, a) = (1 − φ)Q(s, a), ∀s, a
(2)

- Q-learning

Q(s, a) = Q(s, a) + α[r + γ max
a′∈A(s′)

Q(s′, a′) − Q(s, a)] (3)

For the above mechanisms, (1) Roth’s basic RL (reinforcement learning) mech-
anism simply adds rewards to the Q-values, which strengthens Q-values when
an agent acquires a reward; (2) Roth’s three-parameter RE learning mechanism
is extended from the basic one by adding both experimentation parameter λ
and the forgetting parameter φ. This mechanism updates not only the Q-value
of the actually selected action but also Q-values of two actions which are the
most close to the actually selected action. For example, when an agent acquires
r by offering 4, then the mechanism updates Q(s, 3) and Q(s, 5) in addition to
Q(s, 4). Furthermore, this mechanism decreases all Q-value except for Q(s, a),
Q(s, a ± 1) according to φ values; and (3) Q-learning mechanism estimates the
expected rewards by using the one step next Q-values, which strengthens the
sequential state and action pairs that contribute to acquiring the reward. This
is done by updating Q(s, a) to be close to maxQ(s′, a′)6 and continues such up-
dates until the bargaining game is completed. However, Q(s, a) used at the final
4 In Roth’s original equation, Q(s, a) is represented by qnk(t). For example, equation

(1) is originally represented by qnj(t + 1) =

{
qnj(t) + r , if j = k
qnj(t), otherwise

. Here, qnj(t)

indicates Q-values of an action j of an agent n in time t. The k indicate an action
that an agent takes.

5 In Roth’s original equation, λ is represented by ε. We use λ because ε is used in the
action selection.

6 Precisely, Q(s, a) is updated to be r + maxQ(s′, a′). But, r is only set when the
reward is obtained in the sequential bargaining game, and thus Q(s, a) is normally
updated to be close to maxQ(s′, a′).
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negotiation is updated not to be close to maxQ(s′, a′) but to r calculated by
the payoff that an agent acquires. This is because there is no further negotiation
when the bargaining game is completed, and thus maxQ(s′, a′) is set to 0.

For the action selection (the acceptance or counter-offer), the following meth-
ods are employed.

- ε-greedy selection
This method selects an action of the maximum worth (Q-value) at the 1-
ε probability, while selecting an action randomly at the ε (0 ≤ ε ≤ 1)
probability.

- Roulette selection
This method probabilistically selects an action based on the ratio of Q-values
over all actions, which is calculated by the following equation (4). The Roth’s
basic and three parameter RL agents [4,16] employ this selection mechanism.

P (a|s) = Q(s, a)/
∑

ai∈A(s)

Q(s, ai) (4)

- Boltzmann distribution selection
This method probabilistically selects an action based on the ratio of Q-
values over all actions, which is calculated by the following equation (5). In
this equation, T is the temperature parameter which adjusts randomness of
action selection. Agents select their actions at random when T is high, while
they select their greedy actions when T is low.

P (a|s) = eQ(s,a)/T /
∑

ai∈A(s)

eQ(s,ai)/T (5)

3.2 An Example of a Negotiation Process

As a concrete negotiation process, agents proceed as follows. Defining {offer,
offered}A{1,2}

i as the ith offer value (action) or offered value (state) of agent
A1 or A2, A1 starts by selecting one Q-value from the line S(Start) (i.e., one
Q-value from {Q01, · · ·, Q09}7 in the line S), and makes the first offer offerA1

1
according to the selected Q-value (for example, A1 makes an offer 10% if it
selects Q01). Here, we count one step when either agent makes an offer. Then,
A2 selects one Q-value from the line offeredA2

1 (= offerA1
1 ) (i.e., one Q-value

from {QV 0, · · ·, QV 9}, where V = offeredA2
1 (= offerA1

1 )). A2 accepts the offer
if QV 0 (i.e., the acceptance (A)) is selected; otherwise, it makes a counter-offer
offerA2

2 according to the selected Q-value as the same way of A1. This cycle is
continued until either agent accepts the offer of the other agent or a negotiation
is over (i.e., the maximum number of steps (MAX STEP) is exceeded by deciding

7 At the first negotiation, one Q-value is selected from {Q01, · · ·, Q09} not from {Q00,
Q09, · · ·, Q90}. This is because the role of the first agent is to make the first offer
and not to accpet any offer (by selecting Q00) due to the fact that a negotiation has
not started yet.
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Fig. 2. An example of a negotiation process

to make a counter-offer instead of acceptance at the last negotiation step). Just
after the cycle is over, all Q-values used in a sequential negotiation are updated
according to either of equations (1) (2) or (3).

To understand this situation, let us consider the simple example where MAX
STEP = 6 as shown in Figure 2. Following this example, A1 starts to make an
offer 10%(= offerA1

1 ) to A2 by selecting Q01 from the line S(start). However,
A2 does not accept the first offer because it determines to make 10%(= offerA2

2 )
counter-offer by selecting Q11 from the line 10%(= offeredA2

1 , corresponding
to A1’s offer). Then, in this exapmle, A1 makes 90%(= offerA1

3 ) counter-offer
by selecting Q19 from the line 10%(= offeredA1

2 ), A2 makes 90%(= offerA2
4 )

counter-offer by selecting Q99 from the line 90%(= offeredA2
3 ), A1 makes 10%(=

offerA1
5 ) counter-offer by selecting Q91 from the line 90%(= offeredA1

4 ), and
A2 makes 10%(= offerA2

6 ) counter-offer by selecting Q11 from the line 10%(=
offeredA2

5 ). Finally, A1 accepts the 6th offer from A2 by selecting Q10 from the
line 10%, which results in A(acceptance). But, if A1 makes a counter-offer instead
of acceptance of the 6th offer from A2 at the last negotiation step (which means
to exceed the maximum number of steps), both agents can no longer receive any
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payoff, i.e., they receive 0 payoff. Considering the case where Roth’s basic RL
A1 accepts 10% offer from Roth’s basic RL A2 at the 6th negotiation step, A1
and A2 receive 10% and 90% payoffs, respectively, updating all Q-values used in
a sequential negotiation as shown in Table 1.

Table 1. How is Q-table updated?

Agent 1 Agent 2

Q( S,10)=Q( S,10)+10 Q(10,10)=Q(10,10)+10
Q(10,90)=Q(10,90)+10 Q(90,90)=Q(90,90)+10
Q(90,10)=Q(90,10)+10 Q(10,10)=Q(10,10)+10
Q(10, A)=Q(10, A)+10

Here, we count one iteration when the negotiation process ends or fails. In
each iteration, Roth’s learning and Q-learning agents update the worth pairs of
state and action in order to acquire a large payoff.

4 Simulation

4.1 Simulation Cases

The following simulations were conducted in the sequential bargaining game as
comparative simulations shown in Table 2.

– Case 1: Roth’s basic RL agents
Investigation of the results of Roth’s basic RL agents, applying either of
three action selections (i.e., the ε-greed, roulette, and Boltzmann distribution
selections).

– Case 2: Roth’s three parameter RL agents
Investigation of the results of Roth’s three parameter RL agents, applying
either of three action selections.

– Case 3: Q-learning agents
Investigation of the results of Q-learning agents, applying either of three
action selections.

4.2 Evaluation Criteria and Parameter Setting

In each simulation, (a) the payoff for both agents and (b) the negotiation process
size are investigated. Here, the negotiation process size is the number of steps
until an offer is accepted or MAX STEP if no offer is accepted. All simulations
are conducted for up to 10,000,000 iterations, which is enough for the agents to
learn appropriate behaviors, and the results show the moving average of 10,000
iterations, which are all averaged over 10 runs.

As for the parameter setting, the variables are set as follows: (1) for the
common parameters of the game, MAX STEP (maximum number of steps in one
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Table 2. Simulation cases

ε-greedy Roulette
Boltzmann

selection selection
distribution

selection

Roth’s basic RL Case 1-a Case 1-b Case 1-c
Roth’s three parameter RL Case 2-a Case 2-b Case 2-c
Q-learning Case 3-a Case 3-b Case 3-c

iteration) is 6; ε ( ε-greedy selection) is 0.25, T (Boltzmann distribution selection)
is 0.5; (2) for Roth’s learning parameters, λ (experimentation parameter) is 0.05;
φ (forgetting parameter) is 0.001; S(1) (parameter related to initial Q-values) is
10; and (3) for Q-learning parameters, α (learning rate) is 0.1; γ (discount rate) is
1.0; initial Q-values is 0.1. Note that (1) preliminary examinations found that the
tendency of the results does not drastically change according to the parameter
setting; (2) all parameters of Roth’s learning agents are based on Roth’s original
model [4,16]; and (3) initial Q-values in Roth’s learning agents are set by the
following equation (6) as the same as Roth’s original works. In detail, Q(s, a) = 1
when S(1) = 10, because 10 actions (i.e., one acceptance and nine counter offers)
are possible actions in each state s (which means |A(s)| = 10).

Q(s, a) = S(1)/|A(s)|, ∀s (6)

We do not set the same initial Q-values of Roth’s learning agents to Q-learning
agents because it is too large for Q-learning that estimates expected payoffs (i.e.,
nine is the biggest value) but not for Roth’s learning that accumulates payoffs
(i.e., Q-values become large as the iteration increases).

Finally, all simulations were implemented by Java with standard libraries and
conducted in Windows XP OS with Pentium 4 (2.60GHz) Processor.

4.3 Simulation Results

Figures 3 and 4 show the simulation results of Roth’s three parameter RL agents
and Q-learning agents, respectively. Note that the simulation results of Roth’s
basic RL agents are omitted because their results are fundamentally similar to
those of Roth’s three parameter ones. The upper, middle, and lower figures in
Figures 3 correspond to the cases 2-a, 2-b, and 2-c, respectively, while those
figures in Figure 4 correspond to the cases 3-a, 3-b, and 3-c, respectively. The
left and right figures in all cases indicate the payoff and negotiation process size,
respectively. The vertical axis in these figures indicates these two criteria, while
the horizontal axis indicates the iterations. In the payoff figure, in particular,
the solid and dotted lines indicate the payoff of agents 1 and 2, respectively.

These results suggest us that (1) simulation results of Roth’s learning agents
differ from those of Q-learning agents; but (2) simulation results among different
action selections in both Roth’s and Q-learning agents show a similar tendency.
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Fig. 3. Simulation results of Roth’s three parameter RL agents

5 Discussion

5.1 Subject Experiment Result

Before discussing the simulation results of both Roth’s and Q-learning agents,
this section briefly describes the subject experiment result found in [8]. Figure
5 shows this result indicating the payoff of two human players in the left figures
and negotiation process size in the right figures. The vertical and horizontal axes
have the same meaning of Figures 3 and 4. In the payoff figure, in particular, the
solid and dotted lines indicate the payoff of human players 1 and 2, respectively.
Note that all values in this figure are averaged from 10 cases.

This result shows that (1) the payoff of two human players mostly converge
around 50% and 50%, respectively; and (2) the negotiation process size increases
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Fig. 4. Simulation results of Q-learning agents

a little bit in the first several iterations, decreases in the middle iterations, and
finally converges around two. The result on the negotiation process size indicates
that (2-i) human players acquire sequential negotiations; and (2-ii) the decreasing
trend is occurred in the subject experiments.

5.2 Roth’s Learning Agents

Regarding Roth’s learning agents with any type of three action selections (i.e.,
ε-greed, roulette, and Boltzmann distribution selections), Figure 3 shows that
(1) the payoffs of two agents mostly converge around 40% and 60%; and (2) the
negotiation process size is mostly one.
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Fig. 5. Subject experiment results in [8]

From the payoff viewpoint, Roth’s learning agents seem to acquire the similar
results of subject experiments described in Section 5.1. However, this result is
averaged values over 10 runs as described in Section 4.2 and the result in each
run differs each other as shown in Table 3. This table indicates that the payoffs
of both agents in the first run are 52% and 48%, those in the second run are
77.8% and 22.2%, and those in the fifth run are 20% and 80%, respectively. Note
that (1) these values are completely different (no consistency) in each run; and
(2) some of them show an opposite tendency (i.e., the payoff of agent 1 is larger
than that of agent 2 in some cases, while the payoff of agent 2 is larger than
that of agent 1 in other cases). From the negotiation process size viewpoint, on
the other hand, Roth’s learning agents cannot acquire sequential negotiations
because its size is mostly one which means the one time negotiation.

Table 3. The payoffs of Roth’s three parameter RL agents in each run

Run (Seed)
1 2 3 4 5 · · ·

Payoff
Agent 1 52.0% 77.8% 77.4% 70.5% 20.0% · · ·
Agent 2 48.0% 22.2% 22.6% 29.5% 80.0% · · ·

We obtain these results because of the early convergence on an acquisition of
actions, which is caused when a big payoff is obtained by accidentally selecting
a certain action. This convergence occurs due to an accumulation of Q-values of
actions. As shown in equations (1) and (2) of Roth’s learning agents, the reward
obtained by the selected action is accumulated in Q-value (i.e., the payoff or
the (1-λ) times of payoff is simply added in Q-value of the selected action),
that increases the Q-value to the largest values among other Q-values. This
makes agents continuously select the same action that has the largest Q-value.
Furthermore, such an action can be determined at any negotiation time, which
means that the actions selected at each negotiation time are determined one
after another through several games and finally the game is completed by one
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time negotiation after the action selected at the first negotiation is determined.
From these reasons, the payoffs differ in each run, while the negotiation process
size is mostly one.

This analysis suggests that Roth’s learning agents with any type of action se-
lections can neither learn consistent behaviors nor acquire sequential negotiation
in the sequential bargaining game.

5.3 Q-Learning Agents

Regarding Q-learning agents with any type of three action selections (i.e., ε-
greed, roulette, and Boltzmann distribution selections), Figure 4 shows that (1)
the payoffs of two agents mostly converge around 40% and 60% (one of them is
rather close to 50% and 50%); and (2) the negotiation process size is more than
two.

This result suggests that Q-learning agents can acquire the similar results of
subject experiments described in Section 5.1 from the payoff viewpoint and can
acquire sequential negotiations from the negotiation process size viewpoint. We
obtain these results because of no early convergence on an acquisition of actions.
This is because Q-learning updates Q-values not by accumulating the reward but
by estimating the expected reward. This makes agents complete the bargaining
when they acquire the expected reward. However, since Q-values of actions are
not so much different like in the Roth’s learning agents, the negotiation may
continue (i.e., some games are completed by one time negotiation, while others
are completed by the maximum time negotiation). This causes more than two
time negotiations, which means that the negotiation process size is more than
two. Finally, Q-learning agents cannot reproduce the decreasing trend found in
subject experiments.

This analysis suggests that Q-learning agents with any type of action selec-
tions can learn consistent behaviors and acquire sequential negotiation in the
sequential bargaining game.

5.4 Validity of Simulation Results and Design Guideline of Agents

The above analysis derives the following implications: (1) Roth’s basic and three
parameter reinforcement learning agents with any type of three action selections
(i.e., ε-greed, roulette, and Boltzmann distribution selections) can neither learn
consistent behaviors nor acquire sequential negotiation in the sequential bargain-
ing game; and (2) Q-learning agents with any type of three action selections, on
the other hand, can learn consistent behaviors and acquire sequential negotiation
in the same game. This indicates that Q-learning agents have a high reproduc-
tion capability of human-like behaviors. Here, we discuss the following aspects
in terms of a validity of simulation results and a design guideline of agents.

– Interaction
Comparing the iterations between subject experiment and computer simu-
lation, humans require only 20 iterations to learn consistent behaviors and
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acquire sequential negotiation, while Q-learning agents require 10,000,000 it-
erations. This seems that Q-learning agents cannot completely reproduce the
human-like behaviors from the iteration viewpoint. However, the iteration
aspect is not so much significant as the tendency and consistency aspect of
the simulation results. This is because (1) a capability that humans have by
nature is very higher than a capability that Q-learning agents have (e.g., Q-
learning agents do not have the capability of modeling of opponent players);
and (2) the learning speed of agents can be varied by changing parameters
(e.g., Q-learning agents have the learning rate α), which means that an accu-
racy of simulation results does not make sense from the iteration viewpoint.

– Fairness (Equity)
Focusing on the fairness (or equity) of the payoff of both Q-learning agents,
agents employing the Boltzmann distribution selections derive the roughly
equal division of the payoff, which is most similar to the subject experiment
result. In this sense, Q-learning employing the Boltzmann distribution se-
lections have the great potential of being a candidate of the agent design
element from the viewpoint of reproduction capability of human-behaviors.
This implication can be supported by other research of the bargaining game
in the context of experimental economics [5,7]. For example, Nydegger and
Owen showed that there is a focal point8 around 50% split in the payoff of
two players [12]; Binmore suggested that fairness norms evolved to serve as
an equilibrium selection criterion when members of a group are faced with
a new source of surplus and have to divide it among its members without
creating an internal conflict (p. 209) [2]; and the results done by Roth et al.
showed the fairness even though the subjects playing the ultimatum game
had distinct characteristics behaviors (precisely, four different countries: Is-
rael, Japan, USA, and Slovenia) depending on their countries of origin [15].

6 Conclusions

This paper addressed agent modeling in multiagent-based simulation (MABS)
to explore agents who can reproduce human-like behaviors in the sequential bar-
gaining game, which is more difficult to be reproduced than in the ultimate
game. For this purpose, we focused on the Roth’s learning agents who can re-
produce human-like behaviors in several simple examples including the ultimate
game, and compared simulation results of Roth’s learning agents and Q-learning
agents in the sequential bargaining game. Intensive simulations have revealed
the following implications: (1) Roth’s basic and three parameter reinforcement
learning agents with any type of three action selections (i.e., ε-greed, roulette,
and Boltzmann distribution selections) can neither learn consistent behaviors
nor acquire sequential negotiation in the sequential bargaining game; and (2)
Q-learning agents with any type of three action selections, on the other hand,
can learn consistent behaviors and acquire sequential negotiation in the same

8 The focal point is discussed in [18].
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game. However, Q-learning agents cannot reproduce the decreasing trend found
in subject experiments.

What should be noticed here is that these results have only been obtained
from one example, i.e., the sequential bargaining game. Therefore, further careful
qualifications and justifications, such as analyses of results using other learning
mechanisms and action selections or in other domains, are needed to generalize
our results. Such important directions must be pursued in the near future in
addition to the following future research: (1) an exploration of modeling agents
who can reproduce the decreasing trend found in subject experiments; (2) simu-
lation with more than two agents; and (3) an analysis of the case where human
play the game with agents like in [3]; and (4) investigation of the influence of
the discount factor [17] in the bargaining game.
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Abstract. This paper refines a previously introduced procedure to quantify ob-
jective dependence relations between agents of a multiagent system. The quan-
tification of the dependence relations is performed on a specially defined form
of reduced dependence graphs, called dependence situation graphs. The paper
also shows how the procedure can be used to determine a measure of the de-
pendence that a society as a whole has on each agent that participates in it and,
correlatively, a measure of the negotiation powers of the agents of such soci-
ety. The procedure is also extended to allow for the refinement of the objec-
tive degrees of dependence into subjective ones, through the use of auxiliary
coefficients that can represent some subjective aspects of the dependence rela-
tionships. A sample calculation of objective degrees of dependence and negoti-
ation powers of agents of a simple multiagent system is presented, and a hint is
given on how degrees of dependence could be used to support social reasoning
processes.

1 Introduction

The problem of measuring the dependence relations that arise between agents when
they operate in a social context has been put forward as an important problem since
at least [1], where a quantitative notion of strength of a dependence relation is
proposed.

The Conclusion of [9], for instance, indicated several features on which the quantifi-
cation of the dependence relations could be based, such as the importance of a goal to
an agent, the number of actions/resources needed to execute a plan, or the number of
agents which are able to perform a needed action or to control a needed resource. In [6],
dependence relations were given a quantitative evaluation on the basis of subjective no-
tions, namely, the relative importance of goals to the agents and the cost of performing
the necessary actions.

In [3] we proposed an approach to the solution of that the problem by appropriately
separating the quantification process into two steps: the calculation of an objective de-
gree of dependence, determined by an evaluation of the objective facts present in the
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dependence situations that arise from dependence relations, and the subsequent refine-
ment of that objective degree of dependence, by making use of auxiliary coefficients
to take into account the different factors that reflect the subjective evaluation of those
dependence situations from the point of view of the agents present in them.

The main contribution of that paper is a procedure for the first step, the objective
quantification of dependence situations. The procedure computes degrees of depen-
dence between agents on the basis of a specially derived form of dependence graphs
– the DS-graphs (dependence situation graphs) – so that a measure of the degree of de-
pendence of each agent on the agents that can help it to achieve its goals may be given
in an easy way. The resulting degrees of dependence are said to be objective because
they take into account only information about the structure of the dependence situation,
through the DS-graph, and do not involve subjective notions (e.g., the importance of
goals).

Following one of the suggestions given in [9], concerning a basis for the quantifica-
tion of degrees of dependence, the procedure takes into account essentially the number
of agents that are able to perform each needed action, but it also takes into account
the kind of dependence (AND-dependence, OR-dependence) that the structure of the
dependence situation establishes between the involved agents. Thus the need for the
DS-graphs, where those kinds of dependences are explicitly indicated.

Objective degrees of dependence may be subjectively refined in many ways, accord-
ing to the needs of the application where they are to be used, by weighting them with
subjective features that are relevant for the application. For instance, objective degrees
of dependence may be refined by the quantification features suggested in [9], such as
the importance of a goal to an agent or the cost of the necessary resources, or by the
number of resources needed to achieve the goal, or else by probability that each agent
has of really performing an action when the action is necessary.

Also, by summing up the objective degrees of dependence that the agents of a society
have on each other, it is possible to define a measure of the dependence of the society,
as a whole, on each of its agents. Correlatively, it is possible to define a measure of an
agent’s status and negotiation power [2] within the society.

Further more, objective degrees of dependence may be used to refine the social rea-
soning mechanisms that solve the problem of choosing partners for the formation of
coalitions, such as the one introduced in [9,10].

In this paper, we revise the procedure introduced in [3] and introduce additional ex-
amples of its use. The paper is structured as follows. Section 2 summarizes the relevant
ideas concerning social dependence relations and dependence situations. Section 3 re-
views dependence-graphs and introduces the DS-graphs. Section 4 introduces a formal
notation for DS-graphs. Section 5 defines the notion of objective degree of dependence
and shows how they can be calculated on simple DS-graphs. Section 6 introduces ad-
ditional concepts: objective degrees of dependence for DS-graphs containing transitive
dependences and bilateral dependences; objective degrees of dependence of a society
on each of its agents; a measure of an agent’s negotiation power within a society; and
a way to refine objective degrees of dependence with subjective estimates. Section 7
elaborates two example applications, and Section 8 brings the Conclusion and future
work.
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2 Dependence Relations and Dependence Situations

Social dependence relations are pointed out in [1] as one of the main objective reasons
for the establishment of interactions between agents. Social dependence relations can
be defined by:

Definition 1. An agent α is said to socially depend on an agent β, with respect to an
action a, for the purpose of achieving a goal g, denoted (DEP α β a g), if and only if:

1. g is a goal of α;
2. α cannot do a by itself;
3. β can do a by itself;
4. a being done by β implies g being (eventually) achieved.

The definition characterizes social dependence relations as an objective feature of an
agent’s behavior, in the sense that it does not depend on the agent having it represented
in his mental states (beliefs, plans, etc.). In the following, assume that α, β, β1, . . . are
any agents.

Regarding the direction of the dependence, dependence relations between two agents
can be classified either as unilateral or as bilateral:

Unilateral: ∃a, g.(DEP α β a g) ∧ ∀a′, g′.¬(DEP β α a′ g′)
α depends on β with respect to some action a and some goal g, but there is no
action and no goal with respect to which β depends on α

Bilateral: ∃a, g.(DEP α β a g) ∧ ∃a′, g′.(DEP β α a′ g′)
α depends on β with respect to some action a and some goal g, and β depends on
α with respect to some action a′ and some goal g′

Regarding the goals that set the stage for the dependence, bilateral dependence relations
can be classified either as mutual or as reciprocal 1:

Mutual: ∃a, a′, g.(DEP α β a g) ∧ (DEP β α a′ g) ∧ a �= a′

α depends on β, and β depends on α, with respect to the same common goal g
Reciprocal: ∃a, a′, g, g′.(DEP α β a g′) ∧ DEP β α a′ g) ∧ a �= a′ ∧ g �= g′

α depends on β, and β depends on α, with respect to different private goals

Regarding the number of agents involved in a unilateral dependence, and the way their
actions are combined to help achieve an agent’s goal, social dependence relations can
be classified either as OR-dependence or as AND-dependence, in many ways [10]. For
instance:

OR-dependence, multiple partners, single goal, single action needed:
(DEP α β1 a1 g) ∨ (DEP α β2 a2 g) ∨ . . . ∨ (DEP α βn an g)
there are several alternative agents βi, each being able to perform an action ai that
may lead an agent α to achieve the goal g

1 In [1], a distinction is made between cooperation (social behavior induced by a relation of
mutual dependence) and social exchange (social behavior induced by a relation of reciprocal
dependence). We don’t make such distinction and use preferably the term social exchange to
denote both kinds of social behaviors.
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AND-dependence, multiple partners, single goal, multiple actions needed:
(DEP α β1 a1 g) ∧ (DEP α β2 a2 g) ∧ . . . ∧ (DEP α βn an g)
there are multiple partners βi, each having to perform a different action ai to jointly
lead agent α to achieve the goal g

As shown in the work on the DEPNET simulator [10], however, for the purpose of quan-
tifying dependence relations it is not necessary to take actions and plans into account:
it is enough to know that agent α is dependent on agent β to achieve goal g.

In case there are two or more agents that are able to help α to achieve g, it is further
necessary to know just the general kind of dependence (either an AND-dependence or
an OR-dependence) that arises between them and α.

Such simplified picture of a dependence relation, where only agents and goals are
considered, along with the types of relations connecting them, is called a dependence
situation [10].

Thus, the quantification procedure of dependence relations introduced below oper-
ates only on the information contained in such dependence situations, which motivates
the definition of the DS-graphs, in the next section.

3 DS-Graphs: Graphs for Dependence Situations

Dependence graphs were introduced in [11] as a generalization of dependence net-
works [10], for the picturing of the various dependence relations that may exist within
a multiagent system.

They are structures of the form DG = (Ag, Gl, P l, Ac, Ar, Ψ) where agents Ag,
goals Gl, plans Pl and actions Ac are taken as nodes and are linked with each other by
the arcs Ar as specified by function Ψ , thus construing the structure of the dependence
relations to show how agents depend on other agents to achieve goals through plans
involving actions performed by those other agents (see Fig. 1).

Since dependence graphs have usually quite complex structures, [11] also intro-
duced the so-called reduced dependence graphs, where nodes representing plans are
abstracted away and goals are used not as nodes, but as labels of arcs (see Fig. 2).

The procedure for the quantification of dependence relations that we will introduce
below requires only the information contained in the so-called dependence situations,
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Fig. 1. An example dependence graph for a dependence relation between agent A and agents
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which amounts to the immediate information content of the dependence relation ex-
pressed by the elements of the dependence graph, together with the types of depen-
dences intervening between the agents (AND-dependences, OR-dependences).

This information about type is only indirectly represented in dependence graphs,
through the way actions and goals are related to plans.

On the other hand, as mentioned before, the procedure abstracts away information
about which plans (and actions) are involved, thus calculating degrees of dependence
that are relative to an implicitly understood (e.g., currently used) set of plans.

To structure such minimal information contained in dependence situations, we define
the notion of a DS-graph (dependence situation graph):

Definition 2. Let Ag be a set of agents and Gl be the set of goals that those agents may
have. A DS-graph over Ag and Gl is a structure DS = (Ag, Gl, Ar, Lk, Ψ, Δ) such
that:

1. Ar is a set of arcs, connecting either an agent to a goal or a goal to an agent;
2. Lk is a set of links, connecting subsets of arcs;
3. Ψ : Ar → (Ag × Gl) ∪ (Gl × Ag) is a function assigning either an agent and

a goal or a goal and an agent to each arc, so that if Ψ(ar) = (ag, g) then arc ar
indicates that agent ag has the goal g, and if Ψ(ar) = (g, ag) then arc ar indicates
that goal g requires some action by agent ag in order to be achieved;

4. Δ : Lk → ℘(Ar) is a function assigning links to sets of arcs, representing an
AND-dependence between such arcs, so that Δ(l) = {ar1, . . . , arn} iff either:
(a) there are an agent ag and n goals g1, . . . , gn such that

Ψ(ar1) = (ag, g1), . . . , Ψ(arn) = (ag, gn)
indicating that ag aims the achievement of all the goals g1, . . . , gn; or,

(b) there are a goal g and n agents ag1, . . . , agn such that
Ψ(ar1) = (g, ag1), . . . , Ψ(arn) = (g, agn)
indicating that g requires the involvement of all the agents in the set
{ag1, . . . , agn} in order to be achieved.

Given a DS-graph:

1. if there are: a set of agents {ag0, ag1, . . . , agn}; a set of arcs {ar0, ar1, . . . , arn};
a goal g; a link l; and if it happens that Ψ(ar0) = (ag0, g), and Ψ(ari) = (g, agi)
(for 1 ≤ i ≤ n), and Δ(l) = {ar1, . . . , arn}, then we say that agent ag0 is AND-
dependent on agents ag1, . . . , agn with respect to goal g;
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2. if there are: a set of agents {ag0, ag1, . . . , agn}; a set of arcs
{ar1, . . . , arn, ar′1, . . . , ar′n}; a set of goals g1, . . . , gn; a link l; and if it happens
that Ψ(ar1) = (ag0, g1), . . . , Ψ(arn) = (ag0, gn), and Ψ(ar′i) = (gi, ag1)
(for 1 ≤ i ≤ n), and Δ(l) = {ar1, . . . , arn}, then we say that agent ag0 is
AND-dependent on agents ag1, . . . , agn with respect to the goals g1, . . . , gn;

3. if there are: a set of agents {ag0, ag1, . . . , agn}; a set of arcs {ar0, ar1, . . . , an};
a goal g; and if it happens that Ψ(ar0) = (ag0, g), and Ψ(ari) = (g, agi) (for
1 ≤ i ≤ n), but there is no link l such that {ar1, . . . , arn} ⊆ Δ(l), then we say
that agent ag0 is OR-dependent on agents ag1, . . . , agn with respect to goal g;

4. if there are: a set of agents {ag0, ag1, . . . , agn}; a set of arcs
{ar1, . . . , arn, ar′1, . . . , ar′n}; a set of goals g1, . . . , gn; and if it happens
that Ψ(ar1) = (ag0, g1), . . . , Ψ(arn) = (ag0, gn), and Ψ(ar′i) = (gi, agi) (for
1 ≤ i ≤ n), but there is no link l such that {ar1, . . . , arn} ⊆ Δ(l), then we say
that agent ag0 is OR-dependent on agents ag1, . . . , agn with respect to the goals
g1, . . . , gn.

A1
B

1

B2

B3

A
2

B4

B5

B6

g1

g2

Fig. 3. Simple AND-dependence and OR-dependence relations for DS-graphs

Graphically, we use the convention that AND-dependence is represented by a curved
link tying together the arcs involved in such dependence, while OR-dependence is rep-
resented by the absence of any such link. Figure 3 illustrates both AND-dependence (of
agent A1 on agents B1, B2, B3 with respect to goal g1) and OR-dependence (of agent
A2 on agents B4, B5, B6 with respect to goal g2).

4 A Notation for DS-Graphs

In this section we present formal definitions that support the calculation of objective
degrees of dependence in DS-graphs. We develop a notation that allows for a succinct
representation of the structure of dependence situations, and that is used as the basis for
the definition of the calculation procedure.

A dependence situation is written using a disjunctive dependence form:

(α ≺ ∧i1(∨j1 (∧k1βk1)) ∨ . . . ∨ ∧in(∨jn(∧knδkn)) | ∧i1gi1 ∨ . . . ∨ ∧ingin)

where the ∧igi are alternative sets of conjunctive goals, only one of them having to be
achieved in order to satisfy agent α. For any alternative set ∧igi that is achieved, each



178 A.C. da Rocha Costa and G.P. Dimuro

goal gi has to be achieved. However, each such gi has to be achieved by just one of the
alternative conjunctive sets ∧kβk of β agents.

We call structured goals the goals that appear in the goals part of dependence
situations.

Note that in the dependence situations, the higher-level operators ∧ and ∨ are as-
sumed to be non-commutative, so that a correspondence can be kept between (sets of)
agents and goals. This is also the reason why the number of sets of agents that are listed
and the number of goals listed should be the same.

The set of dependence situations expressions is denoted by DS.
The mapping between the expressions defined above and the corresponding DS-

graphs is immediate. Figure 4 illustrates the DS-graph corresponding to the dependence
situation denoted by:

(A ≺ ((B11 ∧ B12) ∧ (B21 ∨ B22)) ∨ (B31 ∧ B32) | (g1 ∧ g2) ∨ g3)

A

g
1

g
2

g3

B11

B
12

B21

B22

B
31

B32

Fig. 4. Sample DS-graph

5 Calculating Objective Degrees of Dependence in DS-Graphs

To calculate objective degrees of dependence, a function dgr is defined, from the set of
expressions of dependence situations to the positive reals in the interval from 0 to 1.

The calculation of the degree of dependence of an agent on other agents, with respect
to a given goal, is informally defined as:

– if an agent is autonomous on another agent, with respect to the given goal, its degree
of dependence on that agent is assigned the value 0;

– the total degree of dependence of an agent on all agents on which it is dependent,
with respect to the given goal, is assigned the value 1;

– if the dependence expression that characterizes the dependence situation of an agent
is of a conjunctive form with k terms, and its associated degree of dependence is d,
then the degree of dependence of the agent with respect to each of the terms of the
dependence expression is assigned the value d;



Quantifying Degrees of Dependence in Social Dependence Relations 179

– if the dependence expression that characterizes the dependence situation of an agent
is of a disjunctive form with k terms, and its associated degree of dependence is d,
then the degree of dependence of the agent with respect to each of the terms of the
dependence expression is assigned the value d/k.

The rationale behind such informal procedure extends the one in [2]:

– a conjunctive form indicates that each of its component is essential to the achieve-
ment of the involved goals, thus all such components should be valued at the same
level of the involved goals;

– a disjunctive form indicates that its components are alternatives that are equally
able to achieve the involved goals, thus they devaluate each other and should be
uniformly valued by a fraction of the value of the involved goals.

This rationale gives rise to the formal definition of the function dgr:

Definition 3. Let G be the structured goal of an agent α and let α be dependent on
a set of other agents for the achievement of G. Then, the objective degree of depen-
dence of α on each such agent is given by the function dgr : DS → [0 ; 1], de-
fined by cases as follows. Let (α ≺ ∨1≤k≤K(∧1≤jk≤Jk

(∨1≤jki≤Ijk
βjki

)) | G) where
G = ∨1≤k≤K∧1≤jk≤Jk

gjk
is a structured goal, and the gjk

are basic goals. Then:

1. dgr[(α ≺ ∨1≤k≤K(∧1≤jk≤Jk
(∨1≤jki≤Ijki

βjki
)) | G)] = 1

2. dgr[(α ≺ ∧1≤jk≤Jk
(∨1≤jki≤Ijki

βjki
) | G)] = 1/K

3. If dgr[(α ≺ ∧1≤jk≤Jk
(∨1≤jki≤Ijki

βjki
) | G)] = n

then dgr[(α ≺ ∨1≤jki≤Ijki
βjki

| G)] = n;
4. If dgr[(α ≺ ∨1≤jki≤Ijki

βjki
| G)] = n

then dgr[(α ≺ βk) | G)] = n/Ijk
.

The following is true about Definition 3:

a) the definition provides a computable notion of degree of dependence that cor-
respond to the two basic kinds of social dependence relations (OR-dependence,
AND-dependence);

b) as the notion of social dependence relation that supports them, the definition states
an objective notion of degree of dependence, which is function of no subjective
evaluation by the agents.

Whenever the goal G is clear from the context, dgr[(α ≺ β | G)] may be denoted by
dgr[(α ≺ β)].

6 Additional Concepts

6.1 Degrees of Transitive Dependences

When analyzing the dependence situations between agents, it is often necessary to take
into account dependence relations that go beyond the direct dependence between the
agents. One form of such indirect dependence is the transitive social dependence.

Transitive social dependence arises because social dependence may happen in a tran-
sitive mode:
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– if α depends on β with respect to some goal g, and β depends on γ w.r.t. some goal
g′, and g′ is instrumental to g, then α depends on γ with respect to the combined
goal g • g′, which is implicitly adopted by α.

To define degrees of dependence for transitive dependence relations, a choice has
to be made regarding the operation on degrees of dependence that is induced by the
transitivity of the relations of social dependence. The choice of multiplication is an
adequate one, since it suitably combines successive degrees of dependence:

Definition 4. Let α be dependent on β with respect to goal g, and β be dependent on
γ with respect to g′, and g′ be instrumental do g. Then, α is said to transitively depend
on γ with respect to the combined goal g • g′, denoted (α ≺ γ, g • g′). Such transitive
degree of dependence is calculated by

dgr[(α ≺β γ | g • g′)] = dgr[(α ≺ β, g)] · dgr[(β ≺ γ, g′)]

Definition 4 enables the calculation of degrees of dependence that takes into account
dependences on agents that are far away in the overall network of social relations, and
not only degrees of dependence for direct dependence relations.

6.2 Degrees of Bilateral Dependence

The social dependence relations examined so far are said to be unilateral. When con-
sidering bilateral social dependence, a notion of degree of bilateral dependence has to
be defined. The natural choice for the operation on the degrees of dependence that arise
from bilateral dependences is addition:

Definition 5. Let α and β be two agents such that α is dependent on β with respect to
a goal g1, and β is dependent on α with respect to a goal g2. Then α and β are said to
be bilaterally dependent on the combined goal g1 ⊗ g2, denoted (α ≺
 β | g1 ⊗ g2).
Such degree of bilateral dependence is calculated by

dgr[(α ≺
 β | g1 ⊗ g2)] = dgr[(α ≺ β | g1)] + dgr[(β ≺ α | g2)]

The following is true about Definition 5:

1. dgr[(α ≺
 β | g1 ⊗ g2)] = dgr[(β ≺
 α | g1 ⊗ g2)] = dgr[(α ≺
 β | g2 ⊗ g1)]
2. the definition applies both to the cases of reciprocal dependence (g1 �= g2) and to

the cases of mutual dependence (g1 = g2).

6.3 Negotiation Power of Agents in Societies

Let M be a set of agents, and α a member of M . Let the subset of agents of M on which
α depends be given by dep(α, M) = {β | (α ≺ β | g) for some g ∈ Goals(α)}. Let
codep(M, α) = {β ∈ dep(S, α) | (β ≺ α | g) for some g ∈ Goals(β)} be the subset
of agents of M that co-depend on α, that is, the subset of agents of dep(M, α) which
are themselves dependent on α.
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We let (α ≺ M) denote the fact that α belongs to M and that it depends on some
subset of agents of M . We let (M ≺ α) denote the fact that some subset of agents of M
are co-dependent on α. The degree with which α depends on M , and the degree with
which M co-depends on α, can both be calculated.

We define the degree of dependence of α on M as:

dgr[(α ≺ M)] =
∑

β∈dep(α,M),g∈Goals(α)

dgr[(α ≺ β | g)]

We define the degree of co-dependence of M on α as:

dgr[(M ≺ α)] =
∑

β∈codep(M,α),g∈Goals(β)

dgr[(β ≺ α | g)]

In [2], the degree of co-dependence of M on α is called α’s social value to M . The
relation between α’s social appeal to M , and the degree of dependence that α has on
M determines α’s capacity of establishing exchanges, cooperation, coalitions, etc., in
M . In [2] this relation is called α’s power of negotiation in M .

Formally, we may establish that the negotiation power of an agent α in a set of agent
M is given by:

NgtPow(α, M) =
dgr[(M ≺ α)]
dgr[(α ≺ M)]

6.4 Refining Objective Degrees of Dependence with Subjective Estimates

Many subjective estimates of goals, actions, resources and plans can influence the way
agents perceive their dependences on other agents: importance, cost, preferences, emo-
tional reactions, cultural biases, etc., all make the degrees of dependence depart in many
ways from the values that can be objectively calculated by the procedure defined above.

Thus, we must define a means to allow the objective degrees of dependence to be
refined by the subjective estimates of those various aspects of a dependence situation.

In a dependence situation, the object agent is the agent whose dependence is being
analyzed, while a third part agent is an agent on which the object agent depends [10].
The subjective factors that may influence the determination of a degree of dependence
are due either to the object agent (importance of goals, preferences among goals, etc.)
or to the third part agents (costs of actions, probability of action execution, etc.).

In a DS-graph, the subjective factors due to the object agents should label the arcs
connecting the object agents to the goals in concern, while the third part agent factors
should label the arcs connecting the goals with the third part agents.

We thus extend definition 3:

Definition 6. Let every wi ∈ [0 ; 1], and G = ∨1≤k≤K∧1≤jk≤Jk
(wjk

· gjk
). Then, the

weighted objective degree of dependence wdgr : DS → [0 ; 1] is defined by cases as
follows:

1. wdgr[(α ≺ ∨1≤k≤K(∧1≤jk≤Jk
(∨1≤jki≤Ijki

(wjki
· βjki

))) | G)] = 1
2. wdgr[(α ≺ ∧1≤jk≤Jk

(∨1≤jki≤Ijki
(wjki

· βjki
)) | ∧1≤jk≤Jk

(wjk
· gjk

))] = 1/K
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3. If wdgr[(α ≺ ∧1≤jk≤Jk
(∨1≤jki≤Ijki

(wjki
· βjki

)) | ∧1≤jk≤Jk
(wjk

· gjk
))] = n

then wdgr[(α ≺ ∨1≤jki≤Ijki
(wjki

· βjki
) | gjk

))] = wjk
· n;

4. If wdgr[(α ≺ ∨1≤jki≤Ijki
(wjki

· βjki
) | gjk

)] = n
then wdgr[(α ≺ βk | gjk

)] = wjki
· (n/Ijk

).

In this way, the objective degrees of dependence that we defined above clearly show
their roles as reference values, upon which subjective factors may operate to modulate
the objective evaluations with subjective factors. Negotiation powers calculated using
weighted degrees of dependence are denoted with the form: wNgtPow(α, M).

In Section 7 we give an example calculation of subjective degrees of dependence and
its application to social reasoning.

7 Sample Calculations of Degrees of Dependence

7.1 Degrees of Dependence and Negotiation Powers

Let there be a situation with one child agent, 3 nanny agents that can buy ice-creams,
and let ice-creams be bought only with the intervention of 2 agents, a clerk and a
cashier. Let the dependence situation be:

(child ≺ nanny1 ∨ nany2 ∨ nanny3 | (GET ice-cream))
(nanny1 ≺ clerk ∧ cashier | (BUY ice-cream))
(nanny2 ≺ clerk ∧ cashier | (BUY ice-cream))
(nanny3 ≺ clerk ∧ cashier | (BUY ice-cream))
(clerk ≺ (nanny1 ∨ nanny2 ∨ nanny3) ∧ cashier | (SELL ice-cream))
(cashier ≺ (nanny1 ∨ nanny2 ∨ nanny3) ∧ clerk | (SELL ice-cream))

Fig. 5 illustrates this dependence situation, with the relation between agents and
goals shown by dashed arrows, and black dots used as a way to represent OR-
dependences. It is immediate that, for instance:

dgr[(child ≺ nanny1 | (GET ice-cream))] = 1/3
dgr[(nanny1 ≺ clerk | (BUY ice-cream))] = 1
dgr[(clerk ≺ nanny1 ∨ nanny2 | (SELL ice-cream))] = 2/3

where the last calculation uses a derived calculation rule:

If (α ≺ β1 ∨ β2 | G) and dgr[(α ≺ β1 | G)] = n1 and dgr[(α ≺ β2 | G)] = n2
then dgr[(α ≺ β1 ∨ β2) | G)] = n1 + n2.

It is also easy to see that, if M is the given dependence situation, then
NgtPow(nanny1, M) < NgtPow(clerk, M), because NgtPow(nanny1, M) = 1/2
and NgtPow(clerk, M) = 4/2.
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  nanny1

  nanny2

  nanny3

   clerk

   cashier

   (BUY ice-cream)

    (BUY ice-cream)

    (BUY ice-cream)

(SELL  ice-cream)

child    (GET ice-cream)

(SELL  ice-cream)

Fig. 5. DS-graphs for the ice-cream situation

7.2 Subjective Degrees of Dependence and Social Reasoning

We now present a very simple example calculation of subjective degrees of dependence.
Let there be a system M with five agents: one producer, two distributors and two con-
sumers. Let the dependence situation be as shown in Fig. 6.

The calculation determines:

dgr[(prod ≺ dist1 | (DELIV ER product))] = 0.5
dgr[(prod ≺ dist2 | (DELIV ER product))] = 0.5
dgr[(dist1 ≺ cons1 | (DELIV ER product)] = 1.0
dgr[(dist1 ≺ cons2 | (DELIV ER product)] = 1.0
dgr[(prod ≺dist1 cons1 | (DELIV ER product) • (DELIV ER product)] = 0.5
dgr[(prod ≺dist1 cons2 | (DELIV ER product) • (DELIV ER product)] = 0.5

so that the producer objectively depends equally on consumer1 and on consumer2.
Let’s now add some subjective information owned by the producer. Namely, let’s add

to the situation that the producer observed failures in the activities of the distributors,
so that distributor2 succeeds to acquire products to deliver only 30% of the time, while
distributor1 succeeds 90% of the time.
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producer

distributor 1

distributor 2

consumer 1

consumer 2

 consumer 3

   (DELIVER product)

   (DELIVER product)

   (DELIVER product)

   (ACQUIRE product)

   (ACQUIRE product)

   (ACQUIRE product)

   (ACQUIRE product)

   (ACQUIRE product)

Fig. 6. DS-graphs for the production-distribution-consumption cycle

The producer, then, can recalculate its degrees of dependence with respect to the
distributors, in order to take into account such subjective information. A simple proce-
dure would be to weight the degrees of dependence with the probabilities of success to
distribute products:

wdgr[(prod ≺ (0.90 · dist1) | (DELIV ER product))] = 0.90 × 0.5 = 0.45
wdgr[(prod ≺ (0.30 · dist2) | (DELIV ER product))] = 0.30 × 0.5 = 0.15
wdgr[(dist1 ≺ cons1 | (DELIV ER product))] = 1.0
wdgr[(dist2 ≺ cons2 | (DELIV ER product))] = 1.0
wdgr[(prod ≺dist1 cons1 | (DELIV ER product) • (DELIV ER product))] = 0.45
wdgr[(prod ≺dist2 cons2 | (DELIV ER product) • (DELIV ER product))] = 0.15

This reasoning could lead producer to feel subjectively that, taking into account
the possible failures in the distribution process, and contrary to the purely structural
calculation, it seems to be more dependent on consumer1 than on consumer2.

This is also in accordance with the producer’s subjective point of view about the
subjective negotiation powers of the consumers, which should be calculated thus:

wdgr[(M ≺ cons1)] = wdgr[(prod ∧ dist1 ≺ cons1)]
= wdgr[(prod ≺dist1 cons1)] + wdgr[(dist1 ≺ cons1)]
= 0.45 + 1.0 = 1.45

wdgr[(cons1 ≺ M)] = wdgr[(cons1 ≺ prod ∧ dist1)]
= wdgr[(cons1 ≺ prod)] + wdgr[(cons1 ≺ dist1)]
= 1.0 + 1.0 = 2.0

wNgtPow(cons1, M) = wdgr[(M ≺ cons1)]/wdgr[(cons1 ≺ M)]
= 1.45/2.0 = 0.725
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and

wdgr[(M ≺ cons2)] = wdgr[(prod ∧ dist2 ≺ cons2)]
= wdgr[(prod ≺dist2 cons2)] + wdgr[(dist2 ≺ cons2)]
= 0.15 + 1.0 = 1.15

wdgr[(cons2 ≺ M)] = wdgr[(cons2 ≺ prod ∧ dist2)]
= wdgr[(cons2 ≺ prod)] + wdgr[(cons1 ≺ dist2)]
= 1.0 + 1.0 = 2.0

wNgtPow(cons2, M) = wdgr[(M ≺ cons2)]/wdgr[(cons2 ≺ M)]
= 1.15/2.0 = 0.575

so that, from the producer’s subjective point of view, and contrary to the purely struc-
tural point of view, consumer1 has a stronger negotiation power in M than consumer2,
which is in agreement with the interpretation of the notion of negotiation power, mean-
ing power to promote better (more profitable) interactions.

Accordingly, if the producer were required to deliver its products to just one of the
distributors, and to choose to which distributor it would continue to deliver its products,
the calculation of the subjective degrees of dependence could be used as a preference
criteria, supporting the choice to deliver only to distributor1.

This also may be stated clearly in another way by defining the notion of relative
negotiation power of the producer with respect to each consumer and then calculating
them.

Definition 7. The relative negotiation power of agent α with respect to agent β in a
system M is given by

RelNgtPow(α, β)M = NgtPow(α, M)/NgtPow(β, M)

Applied to the producer, consumer1 and consumer2 agents we get:

wRelNgtPow(prod, cons1)M = wNgtPow(prod, M)/wNgtPow(cons1, M)
= 2.0/0.725 = 2.76

wRelNgtPow(prod, cons2)M = wNgtPow(prod, M)/wNgtPow(cons2, M)
= 2.0/0.575 = 3.48

Since the relative power of producer with respect to consumer2 is greater then the power
it has with respect to consumer1, the inconveniences that may arise from dismissing
consumer2 should be less then those coming from dismissing consumer1.

8 Conclusion

This paper refined the notion of objective degrees of dependence in dependence relations,
previously introduced in other works, by consolidating a sound way to calculate them.

Many lines of work may derive from the results presented here. It is necessary to
better explore the possible ways objective degrees of dependence may be combined with
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estimates of subjective factors, so that the dynamic evolution of the exchanges among
agents, and the effective behaviors of the agents, can be considered in the moment of
calculating the degrees of dependence.

It is necessary to improve the ways degrees of dependence can be used as criteria in
social reasoning mechanisms, such as the ones concerned with the formation of coali-
tions ( [6] proposed one such way, for utility-based subjective degrees of dependence).

For this to be profitable, however, it is also necessary to develop a theoretical account
of the deep relations that seem to exist between the theory of dependence relations [1]
and the theory of social exchange values [7,8,4,5]. That account could show how ex-
change values may be captured by auxiliary coefficients in subjective dependence rela-
tions, enriching the explanations of the higher level social notions that can be derived
from social dependence, like influence, power, trust, etc.

In particular, such combination of the quantitative analysis of dependence situations
and the qualitative analysis of the state of social exchanges suggests the possibility of
new explorations in the assessment of the various ways agents may be included in social
groups.

It is possible, for instance, that such combination of tools for the analysis of social
relations can help an agent to compare alternative social environments, when looking
for an environment where it would be better positioned with respect to the other agents
with respect to issues such as, e.g., social power.

That is the case, too, of migrating agents, for whom different destination places may
impose quite different social dependence situations, and thus empower the agent with
different negotiation powers.

Also, one sees that already in the example of the producer-distributor-consumer sys-
tem, the demand on the producer could be interpreted as a self imposed demand to
improve its position in the system, since it can be calculated that its expectation of ne-
gotiation power (or, illusion of social power – as mentioned by one of the referees of
the paper) with respect to the consumers is greater if the producer makes the option for
producing with exclusivity for the consumer1 than if it chooses to produce exclusively
for consumer2.
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Costa, Antônio Carlos da Rocha 172

Davidsson, Paul 15
Dimuro, Graçaliz Pereira 172

Edmonds, Bruce 142

Hilaire, Vincent 112
Holmgren, Johan 15

Kawagoe, Toshiji 96
Kawai, Tetsuro 156
Koukam, Abder 112
Koyama, Yuhsuke 156
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